### **TECHNICAL FISHERY REPORT 92-16**



Alaska Department of Fish and Game Division of Commercial Fisheries P.O. Box 25526 Juneau, Alaska 99802-5526

November 1992

Origins of Sockeye Salmon in East Side Bristol Bay Fisheries in 1990 Based on Linear Discriminant Function Analysis of Scale Patterns

by

Barry L. Stratton

James D. Miller

and

**Beverly A. Cross** 

The Technical Fishery Report Series was established in 1987, replacing the Technical Data Report Series. The scope of this new series has been broadened to include reports that may contain data analysis, although data oriented reports lacking substantial analysis will continue to be included. The new series maintains an emphasis on timely reporting of recently gathered information, and this may sometimes require use of data subject to minor future adjustments. Reports published in this series are generally interim, annual, or iterative rather than final reports summarizing a completed study or project. They are technically oriented and intended for use primarily by fishery professionals and technically oriented fishing industry representatives. Publications in this series have received several editorial reviews and at least one *blind* peer review refereed by the division's editor and have been determined to be consistent with the division's publication policies and standards.

# ORIGINS OF SOCKEYE SALMON IN EAST SIDE BRISTOL BAY FISHERIES IN 1990 BASED ON LINEAR DISCRIMINANT FUNCTION ANALYSIS OF SCALE PATTERNS

Ву

Barry L. Stratton

James D. Miller

and

Beverly A. Cross

Technical Fishery Report No. 92-16

Alaska Department of Fish and Game Division of Commercial Fisheries Juneau, Alaska

November 1992

#### **AUTHORS**

Barry L. Stratton is a Region II Bristol Bay Research Biologist for the Alaska Department of Fish and Game, Division of Commercial Fisheries, 333 Raspberry Road, AK 99518.

James D. Miller is a Region II Bristol Bay Research Biologist for the Alaska Department of Fish and Game, Division of Commercial Fisheries, 333 Raspberry Road, AK 99518.

Beverly A. Cross is Region II Bristol Bay Research Project Leader for the Alaska Department of Fish and Game, Division of Commercial Fisheries, 333 Raspberry Road, Anchorage, AK 99518.

#### **ACKNOWLEDGMENTS**

The entire East Side Bristol Bay full-time and seasonal staff of the Alaska Department of Fish and Game, Division of Commercial Fisheries, assisted in collecting data used to generate the 1990 stock composition estimates. We would like to thank Brian Bue (Regional Stock Identification Biometrician) and Linda Brannian (Regional Biometrician) for their advice and assistance.

# TABLE OF CONTENTS

|                                                                                                                                                                                    | Page        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| LIST OF TABLES                                                                                                                                                                     | v           |
| LIST OF FIGURES                                                                                                                                                                    | vii         |
| ABSTRACT                                                                                                                                                                           | ix          |
| INTRODUCTION                                                                                                                                                                       | 1           |
| METHODS                                                                                                                                                                            | 1           |
| Catch and Escapement Estimation                                                                                                                                                    | 1           |
| Age Composition Estimation                                                                                                                                                         | 2           |
| Catch Composition Estimation                                                                                                                                                       | 2           |
| Scale Measurements                                                                                                                                                                 |             |
| Construction Of Age-2.2 Models  Classification Of Age-2.2 Sockeye Salmon  Construction Of Age-1.3 Models  Construction Of Age-2.3 Models  Classification Of Age-2.3 Sockeye Salmon | 3<br>4<br>4 |
| Separation of Naknek/Egegik Age-2.3 Catch                                                                                                                                          |             |
| Run Size Estimation                                                                                                                                                                | 6           |
| RESULTS                                                                                                                                                                            | 6           |
| Catch and Escapement                                                                                                                                                               | 6           |
| Age Composition                                                                                                                                                                    | 7           |
| Classification Models                                                                                                                                                              | 7           |
| Age 2.2 Age 1.3 Age 2.3                                                                                                                                                            |             |

# TABLE OF CONTENTS (Continued)

|                                | <u>Page</u> |
|--------------------------------|-------------|
| Estimates Of Catch Composition | . 8         |
| Age 2.2 Age 2.3 All Ages       | . 9         |
| Harvest Distribution           | . 10        |
| Run By River System            | . 11        |
| Run Distribution               | . 11        |
| LITERATURE CITED               | . 12        |
| TABLES                         | . 15        |
| FIGURES                        | . 51        |
| APPENDIX                       | . 70        |

# LIST OF TABLES

| Tab | <u>le</u>                                                                                                                                                                                 | <u>Page</u> |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1.  | Scale variables screened for linear discriminant function analysis of age-2.2, -1.3, and - 2.3 sockeye salmon for the East Side of Bristol Bay, 1990                                      | . 15        |
| 2.  | Sockeye salmon commercial catch by district and date for the East Side of Bristol Bay, 1990                                                                                               | . 17        |
| 3.  | Sockeye salmon escapement by river and date for the East Side of Bristol Bay, 1990                                                                                                        | . 18        |
| 4.  | Sockeye salmon age composition by brood year in the commercial catch for the East Side of Bristol Bay, 1990                                                                               | . 19        |
| 5.  | Sockeye salmon age composition by brood year in the escapement for the East Side of Bristol Bay, 1990                                                                                     | . 20        |
| 6.  | Mean and standard error of age-2.2 scale variables used to construct linear discriminant functions for the East Side of Bristol Bay, 1990                                                 | . 21        |
| 7.  | Mean, variance, and t-statistic comparing males and females for selected scale variables of age-2.2 sockeye salmon sampled from Kvichak, Naknek, Egegik, and Ugashik Rivers, 1990         | . 22        |
| 8.  | Classification matrices from discriminant analyses of age-2.2 sockeye salmon sampled from Kvichak, Naknek, Egegik, and Ugashik Rivers, 1990                                               | . 24        |
| 9.  | Mean and standard error of age-1.3 scale variables used to construct linear discriminant functions for the East Side of Bristol Bay, 1990                                                 | . 28        |
| 10. | Classification matrix from a discriminant analysis of age-1.3 sockeye salmon sampled from Kvichak, Naknek, Egegik, and Ugashik Rivers, 1990                                               | . 29        |
| 11. | Mean and standard error of age-2.3 scale variables used to construct linear discriminant functions for the East Side of Bristol Bay, 1990                                                 | . 30        |
| 12. | Mean, variance, and t-statistic comparing males and females for selected scale variables of age-2.3 sockeye salmon sampled from Kvichak, Naknek, Egegik, and Ugashik Rivers, 1990         | . 31        |
| 13. | Classification matrices from discriminant analyses of age-2.3 sockeye salmon sampled from Kvichak, Naknek, Egegik, and Ugashik Rivers, 1990                                               | . 33        |
| 14. | Run composition estimates and 90% confidence intervals (C.I.) calculated from scale pattern analyses of age-2.2 sockeye salmon by fishery and date for the East Side of Bristol Bay, 1990 | . 35        |

# LIST OF TABLES (Continued)

| <u>Tab</u> | <u>ole</u>                                                                                                                                                                                | Page |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 15.        | Estimated numbers of age-2.2 sockeye salmon by river of origin harvested in the East Side of Bristol Bay, 1990                                                                            | . 36 |
| 16.        | Run composition estimates and 90% confidence intervals (C.I.) calculated from scale pattern analyses of age-2.3 sockeye salmon by fishery and date for the East Side of Bristol Bay, 1990 | . 37 |
| 17.        | Estimated numbers of age-2.3 sockeye salmon by river of origin harvested in the East Side of Bristol Bay, 1990                                                                            | . 38 |
| 18.        | Run composition estimates of sockeye salmon catch by age group and date, Naknek-Kvichak District, 1990                                                                                    | . 39 |
| 19.        | Run composition estimates of sockeye salmon setnet catch from selected beaches, Naknek Section, Naknek-Kvichak District, 1990                                                             | . 41 |
| 20.        | Run composition estimates of sockeye salmon catch by age group and date,  Egegik District, 1990                                                                                           | . 42 |
| 21.        | Run composition estimates of sockeye salmon setnet catch from selected beaches, Egegik District, 1990                                                                                     | . 44 |
| 22.        | Run composition estimates of sockeye salmon catch by age group and date, Ugashik District, 1990                                                                                           | . 45 |
| 23.        | Catch of sockeye salmon by run and district for the East Side of Bristol Bay, 1990                                                                                                        | . 47 |
| 24.        | Percentages of sockeye salmon by run and age group for the East Side of Bristol Bay, 1990                                                                                                 | . 48 |
| 25.        | Numbers of sockeye salmon by run and age group for the East Side of Bristol Bay, 1990                                                                                                     | . 49 |
| 26.        | Comparison of sockeye salmon run estimates for the East Side of Bristol Bay, 1990                                                                                                         | . 50 |

# LIST OF FIGURES

| <u>Fig</u> ı | <u>ure</u>                                                                                                                                                                                       | <u>Page</u> |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1.           | Bristol Bay major river systems and commercial fishing districts                                                                                                                                 | . 51        |
| 2.           | Commercial catch of sockeye salmon in Naknek-Kvichak, Egegik, and Ugashik Districts from 1978 through 1990                                                                                       | . 52        |
| 3.           | Age-2.2 sockeye salmon scale showing the growth zones measured to generate variables to build linear discriminant functions                                                                      | . 53        |
| 4.           | Total number of circuli counted in all freshwater growth zones (NC1FW+NC2FW+NCPG) on age-2.3 sockeye salmon escapement scales, Naknek and Egegik Rivers, 1990                                    | . 54        |
| 5.           | Total number of circuli counted in first and second freshwater growth zones (NC1FW+NC2FW) on age-2.2 sockeye salmon escapement scales, Kvichak, Naknek, Egegik and Ugashik Rivers, 1990          | . 55        |
| 6.           | Total number of circuli counted in all freshwater growth zones (NC1FW+NC2FW+NCPG) on age-2.3 sockeye salmon escapement scales, Kvichak, Ugashik, and Naknek/Egegik (Other) Rivers combined, 1990 | . 56        |
| 7.           | Stock composition estimates for 1990 Naknek-Kvichak District age-2.2 sockeye salmon catch in percent and numbers through time                                                                    | . 57        |
| 8.           | Stock composition estimates for 1990 Egegik District age-2.2 sockeye salmon catch in percent and numbers through time                                                                            | . 58        |
| 9.           | Stock composition estimates for 1990 Ugashik District age-2.2 sockeye salmon catch in percent and numbers through time                                                                           | . 59        |
| 10.          | Stock composition estimates for 1990 Naknek-Kvichak District age-2.3 sockeye salmon catch in percent and numbers through time                                                                    | . 60        |
| 11.          | Stock composition estimates for 1990 Egegik District age-2.3 sockeye salmon catch in percent and numbers through time                                                                            | . 61        |
| 12.          | Stock composition estimates for 1990 Ugashik District age-2.3 sockeye salmon catch in percent and numbers through time                                                                           | 62          |
| 13.          | Stock composition estimates for 1990 Naknek-Kvichak District total sockeye salmon catch in percent and numbers through time                                                                      | 63          |
| 14.          | Stock composition estimates for 1990 Egegik District total sockeye salmon catch in percent and numbers through time                                                                              | 64          |
| 15.          | Stock composition estimates for 1990 Ugashik District total sockeye salmon catch in percent and numbers through time                                                                             | 65          |

# LIST OF FIGURES (Continued)

| Fig         | <u>ure</u>                                                                                                                           | Page |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------|------|
| 16.         | Estimated 1990 Kvichak River sockeye salmon run (by age and total) by escapement, in district catch, and other district catch        | . 66 |
| 17.         | Estimated 1990 Naknek River sockeye salmon run (by age and total) by escapement, in district catch, and other district catch         | . 67 |
| 18.         | Estimated 1990 Egegik River sockeye salmon run (by age and total) by escapement, in district catch, and other district catch         | . 68 |
| 19.         | Estimated 1990 Ugashik River sockeye salmon run (by age and total) by escapement, in district catch, and other district catch        | . 69 |
|             | LIST OF APPENDICES                                                                                                                   |      |
| Ap          | <u>pendix</u>                                                                                                                        | Page |
| <b>A</b> .1 | Comparison of stock composition estimates of sockeye salmon caught in Naknek-Kvichak District and Naknek Section only openings, 1990 | . 70 |

#### **ABSTRACT**

Stock composition of the 1990 commercial sockeye salmon *Oncorhynchus nerka* harvests in Naknek-Kvichak, Egegik, and Ugashik Districts, Bristol Bay, Alaska, were estimated with scale pattern analyses and age composition. Scale measurements from age-2.2 and -2.3 sockeye salmon escapement samples were used to build discriminant functions which allowed the stock composition of these age groups in the commercial catch to be estimated. Stock origins for other age groups were estimated by combining age-2.2 and -2.3 scale pattern analyses with escapement age compositions. Most sockeye salmon harvested had originated from rivers within the fishing district; however, harvest of outside stocks occurred in every district. Of the estimated 17,126,625 sockeye salmon caught in Naknek-Kvichak District, 52% were from Kvichak River, 40% from Naknek River, 3% from Egegik River, and 5% from Ugashik River. The estimated 10,086,953 sockeye salmon caught in Egegik District were composed of the following stocks: 78% Egegik, 17% Kvichak, 3% Naknek, and 2% Ugashik Rivers. The estimated Ugashik District harvest of 2,144,268 sockeye salmon were 74% Ugashik River, 5% Kvichak River, < 1% Naknek River, and 21% Egegik River origin. Estimated exploitation rates were 60% for Kvichak River, 78% for Naknek and Ugashik Rivers, and 80% for Egegik River stocks.

KEY WORDS: Sockeye salmon *Oncorhynchus nerka*, Bristol Bay, scale pattern analysis, linear discriminant analysis, stock composition, exploitation rate

#### INTRODUCTION

To facilitate discreet stock management, the Bristol Bay sockeye salmon *Oncorhynchus nerka* fishery is restricted to districts located near the mouths of major spawning streams (Figure 1). However, the close proximity of these spawning streams and annual variation in migratory routes still results in stock mixing in the fisheries.

The Bristol Bay Management Area is divided into two general fisheries, the East and West Side. The East Side fishery is composed of Naknek-Kvichak, Egegik, and Ugashik Districts (Figure 1); the West Side fishery includes Nushagak and Togiak Districts. Naknek-Kvichak District is further subdivided into Naknek and Kvichak Sections.

From 1956 to present, harvest stock composition estimates from Naknek-Kvichak District were based on escapement age composition estimates from Kvichak, Alagnak (Branch), and Naknek Rivers, and total runs of sockeye salmon to Egegik and Ugashik Rivers were estimated by adding the district catch to the district escapement. This standard method assumes (1) that all fish harvested in a district were returning to rivers within that district, and (2) equal exploitation among stocks. Complete results of the standard method have been summarized and published in separate reports (Stratton 1990, 1991). Bernard (1983) evaluated the biases inherent with this procedure.

Decreased catches of sockeye salmon in Naknek-Kvichak District in 1985 and 1986 prompted concern that these fish were being intercepted in Egegik and Ugashik Districts where catches were large (Figure 2). Straty (1975), after conducting a tagging study from 1955 to 1957, concluded that East Side sockeye salmon stocks mixed in all East Side Districts and that West Side stocks were not present in appreciable numbers in East Side districts. Examining the 1985 East Side commercial catches, Fried and Yuen (1985) found that scale pattern analysis could accurately identify major East Side sockeye salmon stocks. Scale pattern studies were expanded in 1986 and stock compositions of East Side district catches have been estimated from 1983 to present (Bue et al. 1986; Cross and Stratton 1989, 1991; Burns 1991; Cross et. al. 1992).

Objectives of this ongoing investigation of the East Side sockeye salmon runs include (1) estimation of stock composition in East Side commercial sockeye salmon harvests; (2) estimation of total run by river; and (3) comparison of run estimates by river obtained from scale pattern analyses with the standard method. For this report, the objectives were specific to the 1990 run.

#### **METHODS**

#### Catch and Escapement Estimation

Commercial catch statistics in this report were documented in ADF&G (1991); these statistics were computed from final operation reports prepared by fish processors. The numbers in this report may differ slightly from final ADF&G catch statistics because minor errors may be detected. Sockeye salmon escapement estimates were based on visual counts made from towers on the banks of Kvichak, Naknek, Egegik and Ugashik Rivers (ADF&G 1991).

#### Age Composition Estimation

European notation (Koo 1962) was used to record ages; numerals preceding the decimal refer to number of freshwater annuli, numerals following the decimal refer to number of marine annuli. Total age from time of egg deposition (brood year) is the sum of these numbers plus one. Complete methods and results of sampling 1990 Bristol Bay sockeye salmon catches and escapements have been summarized and published in a separate report (Stratton 1991).

#### Catch Composition Estimation

Linear discriminant function analysis (Fisher 1936) of scale patterns combined with age composition data were used to determine sockeye salmon stock origins in the 1990 East Side harvests. Sockeye salmon harvested from selected setnet beaches in Naknek-Kvichak and Egegik Districts were also sampled in 1990 and classified to river of origin.

#### **Scale Measurements**

Scale impressions were projected at 100X magnification onto a digitizing tablet using equipment similar to that described by Ryan and Christie (1976). Measurements were taken along the anterior-posterior axis to standardize each scale. This axis is approximately 20° ventral of the long axis and perpendicular to the sculptured (anterior) field (Figure 3). Distances between growth rings (circuli) were measured to the nearest 0.01 in, and number of circuli counted from (1) center of scale focus to outside edge of first freshwater annulus (first freshwater annulus counted edge of first freshwater annulus to outside edge of second freshwater annulus (second freshwater annulus zone), (3) outside edge of last freshwater annulus to end of freshwater growth (freshwater plus growth zone), if present, and (4) outside edge of last freshwater circulus to outer edge of first ocean annulus (first marine annular zone). Total distance from the outside edge of first ocean annulus to outside edge of second ocean annulus (second marine annular zone) was recorded for age-1.3 and -2.3 sockeye salmon. A total of 75 variables for age-1.3 samples, 108 for age-2.2 samples, and 109 for age-2.3 samples were computed from distance measurements and circuli counts (Table 1).

#### Linear Discriminant Analysis

Escapement samples from Kvichak, Naknek, Egegik, and Ugashik Rivers provided known-origin scales used to build linear discriminant functions (LDF). Branch River, a Kvichak River tributary, was not included in the Kvichak standard as (1) it is numerically small compared to the Kvichak River run; Kvichak escapement was estimated to be 6,970,020, Branch escapement was estimated to be 168,578; and (2) Branch River age composition was determined by examining otoliths rather than scales (Stratton 1991).

Commercial catch samples provided scales of unknown origin. Escapement samples collected in 1990 were used to classify 1990 catches in age-specific LDF models.

Frequency distribution plots for principal scale variables for each growth zone were examined. Differences between mean number of circuli and size of selected growth zones for males and females were compared using independent *t*-tests. Scale variable selection for each discriminant model was made using a forward stepping procedure with partial *F*-statistics as criteria for entry or removal of variables (Enslein et al. 1977). This process was continued until model accuracy ceased improving. The equality of variance-covariance matrices were tested using an *F*-statistic described by Box (1949). A nearly unbiased estimate of overall classification accuracy for each LDF was determined with a "leaving-one-out procedure" (Lachenbruch 1967).

Construction of Age-2.2 Models. A four-way linear discriminant model was constructed from scale measurements of age-2.2 sockeye salmon entering Kvichak, Naknek, Egegik, and Ugashik Rivers. Approximately 200 scale samples from each 1990 escapement weighted by run strength through time were used to build discriminant models.

Classification of Age-2.2 Sockeye Salmon. The four-way linear discriminant model was used to classify 1991 district catches of age-2.2 sockeye salmon. Proportion by stock estimates in the catches derived from the model were adjusted for misclassification error with the procedure of Cook and Lord (1978). The adjusted proportions were assumed to reflect true stock composition. Variance and 90% confidence intervals around adjusted estimates were computed using the procedure of Pella and Robertson (1979). A catch sample was reclassified with a model representing fewer stocks if the adjusted proportion was  $\leq$  0 for one or more stocks in the four-way model.

The number of age-2.2 sockeye salmon for stock i in a specific catch stratum,  $(\hat{C}_{i2.2})$  was calculated as:

$$\hat{C}_{i2.2} = \hat{C}\hat{P}_{2.2} \hat{S}_{i2.2} , \qquad (1)$$

where:

 $\hat{C}$  = estimated catch of sockeye salmon in a fishery at a given time,

 $P_{2.2}$  = estimated proportion of age-2.2 sockeye salmon in the catch, and

 $S_{i2.2}$  = estimated proportion of age-2.2 sockeye salmon of stock *i* in the catch.

In this procedure, the variance about catch (C) is not evaluated. Consequently, a conditional variance of the estimated age-2.2 sockeye salmon catch  $(V[C_{i2.2}])$  for each stock in a specific fishery at a given time was calculated as described by Goodman (1960). This provided an exact variance of a product conditional on catch:

$$V[\hat{C}_{i22}] = C^2 V[\hat{P}_{22} \hat{S}_{i22}] , \qquad (2)$$

$$V[\hat{P}_{2,2}\hat{S}_{i2,2}] = V[\hat{P}_{2,2}]\hat{S}_{i2,2}^2 + V[\hat{S}_{i2,2}]\hat{P}_{2,2}^2 - V[\hat{S}_{i2,2}]V[\hat{P}_{2,2}]$$
(3)

Contributions for each stock through time for a specific fishery were added to estimate total contribution to that fishery. The variance of the total contribution was calculated by summing the variances for each period. The contributions by stock to each fishery were added to produce the total contribution by stock to the East Side age-2.2 sockeye salmon harvest. The variance of the total contribution by stock was calculated as the sum of the variances for each fishery.

Construction of Age-1.3 Models. A four-way linear discriminant model was constructed from scale measurements of age-1.3 sockeye salmon entering Kvichak, Naknek, Egegik, and Ugashik Rivers. Models were built with age-1.3 scale samples from each 1990 escapement weighted by run strength through time.

Construction of Age-2.3 Models. A four-way linear discriminant model was built from scale measurements of age-2.3 sockeye salmon entering Kvichak, Naknek, Egegik, and Ugashik Rivers. Scale samples from each 1990 escapement weighted by run strength through time were used to build discriminant models. Frequency distribution plots of the total size of freshwater growth zones for Naknek and Egegik River stocks were similar (Figure 4). Therefore, all Naknek and Egegik River samples were pooled. A three-way linear discriminant model was built using scales from Kvichak, Ugashik, and a pooling of Naknek and Egegik.

Classification of Age-2.3 Sockeye Salmon. Linear discriminant models were used to assign unknown samples to river of origin. Procedures for the age-2.3 analysis were the same as those used for the age-2.2 analysis.

#### Separation of Naknek-Egegik Age-2.3 Catch

Proportions of age-2.3 sockeye salmon classified to the Naknek/Egegik aggregate were separated to their respective river based on scale pattern estimates for age-2.2 sockeye salmon and age composition of escapements:

$$\hat{S}_{i2.3} = \hat{S}_{p2.3} \frac{\hat{T}_{i2.3}}{\hat{T}_{i2.2}} ,$$

$$\sum_{i=1}^{n} \left( \hat{S}_{i2.2} \frac{\hat{T}_{i2.3}}{\hat{T}_{i2.2}} \right) ,$$
(4)

$$\hat{S}_{i2.2} = \frac{\hat{C}_{i2.2}}{\hat{C}_{2.2}} \quad , \tag{5}$$

$$\hat{T}_{i2.2} = \frac{\hat{E}_{i2.2}}{-\hat{E}_i} \quad , \tag{6}$$

where:

 $S_{i2.3}$  = estimated proportion of age-2.3 sockeye salmon of stock i (Naknek or Egegik) in the catch,

 $S_{p2.3}$  = estimated proportion of age-2.3 sockeye salmon of Naknek-Egegik pooled stocks in the

 $\hat{T}_{i2.3}$  = estimated proportion of age-2.3 sockeye salmon in stock *i* escapement,

 $T_{i2.2}$  = estimated proportion of age-2.2 sockeye salmon in stock *i* escapement,

 $C_{i2.2}$  = estimated number of age-2.2 sockeye salmon of stock i in the catch,

 $C_{2.2}$  = estimated numbers of age-2.2 sockeye salmon in the catch,

 $\dot{E}_{i2.2}$  = estimated number of age-2.2 sockeye salmon in stock *i* escapement,

 $E_i$  = number of sockeye salmon in stock i escapement, and

n = number of stocks.

Two assumptions were made: (1) age composition of Naknek and Egegik River escapements represented the catch age composition; and (2) exploitation of age-2.3 sockeye salmon within Naknek and Egegik Rivers was equal to exploitation of age-2.2 sockeye salmon within those rivers.

#### Other Age Group Stock Composition Estimation

Estimates of stock composition for sockeye salmon of other ages harvested in East Side districts were based on scale pattern estimates for age-2.2 and -2.3 sockeye salmon, and the ratio of age-2.2 and -2.3 sockeye salmon to sockeye salmon of other age groups within respective escapements:

$$\hat{S}_{ij} = \frac{\hat{S}_{i(2,2,2,3)} \frac{\hat{T}_{ij}}{\hat{T}_{i(2,2,2,3)}}}{\sum_{i=1}^{n} \left( \hat{S}_{i(2,2,2,3)} \frac{\hat{T}_{ij}}{\hat{T}_{i(2,2,2,3)}} \right)} , \tag{7}$$

$$\hat{S}_{i(2.2,2.3)} = \frac{\hat{C}_{i2.2} + \hat{C}_{i2.3}}{\hat{C}_{2.2} + \hat{C}_{2.3}} , \qquad (8)$$

$$\hat{T}_{i(2.2,2.3)} = \frac{\hat{E}_{i2.2} + \hat{E}_{i2.3}}{\hat{E}_{i}} , \qquad (9)$$

where:

 $T_{ij}$  = estimated proportion of age j sockeye salmon in stock i escapement;

 $T_{i(2,2,2,3)}$  = estimated proportion of combined age-2.2 and age-2.3 sockeye salmon of stock *i* in

the escapement;

 $C_{i23}$  = estimated number of age-2.3 sockeye salmon of stock *i* in the catch;

 $C_{23}$  = estimated number of age-2.3 sockeye salmon in the catch; and

 $E_{i2.3}$  = estimated number of age-2.3 sockeye salmon in stock *i* escapement

#### Run Size Estimation

Sockeye salmon run size to each river was estimated by adding estimates of catch by stock to escapement estimates. For each river, we computed the percentage (1) harvested within the natal district, (2) harvested outside the natal district, and (3) that escaped. Finally, run size estimates from scale pattern analysis were compared with estimates from the standard method.

#### **RESULTS**

#### Catch and Escapement

Commercial fishermen harvested an estimated 29,357,846 sockeye salmon in East Side districts in 1990 (Table 2). This was much greater than the 1980-89 average catch of 18.3 million. The 17,126,625

sockeye salmon caught in Naknek-Kvichak District accounted for 58.3% of the East Side harvest; commercial harvests in Egegik were 10,086,953 or 34.4% of the East Side harvest and in Ugashik were 2,144,268 or 7.3%.

Sockeye salmon escapements in 1990 were estimated to be 6,970,020 in Kvichak River, 2,092,578 in Naknek River, 2,191,362 in Egegik River, and 730,038 in Ugashik River (Table 3).

#### Age Composition

Four age groups made up 98.9% of the East Side sockeye salmon catch: age-1.2 was 12.0%, age-1.3 was 19.1%, age-2.2 was 39.6%, and age-2.3 was 28.2% (Table 4). Naknek-Kvichak District catch was 45.0% age-2.2, 22.6% age-1.3, and 20.4% age-2.3. Egegik District catch was 41.6% age-2.3 and 32.2% age-2.2. Ugashik District catch was 31.3% age-2.2, 27.7% age-2.3, and 24.2% age-1.3.

Age composition of sockeye salmon escapements varied among runs (Table 5). Kvichak River escapement was 87.6% age-2.2 sockeye salmon. Naknek River escapement was 30.6% age-1.3), 28.1% age-1.2, and 27.6% age-2.2. Egegik River escapement was 42% age-2.2, 25% age-1.2, and 25% age-2.3. Ugashik River escapement was 38% age-2.2, 24% age-1.3, and 22% age-1.2.

#### Classification Models

#### Age 2.2

Scale characteristics which differed the most among age-2.2 sockeye salmon stocks were variables 63, 8, and 57 (Table 6). In general, freshwater growth of sockeye salmon was greatest in Egegik River, followed by Naknek, Ugashik, and Kvichak Rivers. Frequency distribution plots of the total number of circuli in the freshwater growth zone showed Kvichak River samples to be most distinctive and Naknek and Egegik River samples to be the most similar (Figure 5).

T-statistics were computed to test for differences in mean circuli number and major growth zone size between males and females within each stock (Table 7). Significant differences (P < 0.05) between sexes were found for the size of the first ocean growth zone within Kvichak (t = 4.36), Egegik (t = 2.37), and Ugashik (t = 3.87) River samples and for the size of the first freshwater growth zone in Egegik River samples (t = 3.78). Because no growth zones were consistently different between sexes for all stocks, samples of males and females were combined to build the models.

Estimated overall classification accuracy for the four-way age-2.2 model was 75.0% (Table 8). Individual stock classification accuracy was greatest for Kvichak (87.3%), similar for Egegik (76.5%) and Ugashik (75.4%), and least for Naknek (60.9%) River. Samples from Naknek River misclassified mostly to Egegik

and Ugashik Rivers. The range of overall classification accuracies were 80.4% to 87.8% for three-way models and 89.8% to 98.0% for two-way models.

#### Age 1.3

Scale characteristics which differed the most among stocks of age-1.3 sockeye salmon were variables 14, 77, and 24 (Table 9). Estimated overall classification accuracy for the four-way age-1.3 model was 69.2% (Table 10). Individual stock classification accuracy was greatest for Egegik (85.9%), followed by Kvichak (75.0%) Naknek (61.0%), and Ugashik (55.0%) Rivers. Due to small sample sizes, poor model accuracy, and budget limitations, this model was not used to classify age-1.3 catches to river of origin.

#### Age 2.3

Scale variables were similar between Naknek and Egegik samples, and the four way model could not accurately differentiate between these stocks (Table 11: Figure 4). Kvichak and Ugashik stocks were distinct (Figure 6). Therefore, we pooled Naknek and Egegik samples and compared them to Kvichak and Ugashik River samples in a three-way model. Scale measurements that provided the greatest discrimination among age-2.3 sockeye salmon in the three-way model were variables 65, 27, and 67 (Table 11). Freshwater growth was greatest for the Naknek/Egegik component, and least for Kvichak River (Table 11; Figure 6).

T-statistics were computed to test for differences in mean circuli number and major growth zone size between males and females within each stock (Table 12). Significant differences (P < 0.05) between sexes were found for the size of the first ocean growth zone for Naknek (t = 3.05), Egegik (t = 2.13), and Ugashik (t = 5.11) Rivers, and in the size of the second ocean growth zone for Kvichak (t = 2.72) and Egegik (t = 2.29) Rivers. Since no growth zones were consistently different between sexes for all stocks, samples of males and females were combined to build the models.

Estimated overall classification accuracy for the three-way, age-2.3 model was 83.3% (Table 13). Individual stock classification accuracy was fairly high and similar for all groups: Kvichak was 84.3%; Naknek/Egegik was 83.5%; and Ugashik was 82.2%. Overall classification accuracy for the two-way model was 93.3%.

#### Estimates of Catch Composition

#### Age 2.2

Most age-2.2 sockeye salmon harvested in each district originated from rivers within the district (Table 14). Of the estimated 7,702,820 age-2.2 sockeye salmon caught in Naknek-Kvichak District, 96.6%

originated within the district and 3.4% from outside the district (Figure 7). The percentage of Kvichak River sockeye salmon in Naknek/Kvichak District catches remained high throughout the season (NSC = non-statistical comparison). Of the estimated 3,248,740 age-2.2 sockeye salmon caught in Egegik District, 56.6% originated from Egegik River and 43.4% were produced outside the district (Figure 8). The percentage of Egegik River age-2.2 sockeye salmon harvested in Egegik District was low early in the season, while the percentage of Kvichak sockeye salmon generally declined during the season (NSC). The estimated catch of age-2.2 sockeye salmon in Ugashik District was 673,465; 84.0% originated in Ugashik River and 16.0% from outside the district (Figure 9). The contribution of Ugashik River age-2.2 sockeye salmon to Ugashik District catches was low prior to 26 June, and high after that date (NSC).

The 90% confidence intervals around stock composition point estimates of age-2.2 sockeye salmon are presented in Table 14. Coefficients of variation for stock estimates were low for the most abundant stocks: 2.4 for Kvichak River, 5.4 for Egegik River, 10.7 for Ugashik River, and 15.8 for Naknek River (Table 15).

#### Age 2.3

Most age-2.3 sockeye salmon harvested in each district originated from rivers within the district (Table 16). Of the estimated 3,491,358 age-2.3 sockeye salmon caught in Naknek-Kvichak District, 88.4% originated within the district and 11.6% from outside the district (Figure 10). The percentage of Naknek River sockeye salmon increased while the percentage of Kvichak River sockeye salmon decreased through time in Naknek-Kvichak District age-2.3 catches (NSC). Of the estimated 4,192,760 age-2.3 sockeye salmon caught in Egegik District, 90.9% originated from Egegik River and 9.1% were produced outside the district (Figure 11). The percentage of Egegik age-2.3 sockeye salmon increased during the season (NSC). The estimated catch of age-2.3 sockeye salmon in Ugashik District was 590,690, 48.2% originated in Ugashik River and 51.8% from stocks outside the district (Figure 12). Egegik River sockeye salmon contributed 43.4% of the Ugashik District age-2.3 harvest.

The 90% confidence intervals around stock composition point estimates of age-2.3 sockeye salmon are presented in Table 16. Coefficients of variation for stock proportion estimates were lowest for the most abundant stocks: 2.4 for Naknek/ Egegik, 5.2 for Kvichak River, and 15.1 for Ugashik River (Table 17).

#### All Ages

The Naknek-Kvichak District harvest was comprised of an estimated 8,884,729 sockeye salmon from Kvichak River, 6,914,552 from Naknek River, 524,187 from Egegik River, and 803,157 from Ugashik River (Table 18). Estimated stock contribution to the Naknek-Kvichak District total catch were 51.8% for Kvichak, 40.4% for Naknek, 3.1% for Egegik, and 4.7% for Ugashik Rivers (Figure 13). Comparisons of stock composition estimates from Naknek-Kvichak District and Naknek Section only openings can be found in Appendix A.1. On north Naknek beach, stock composition of setnet harvests between Libbyville and Pederson Point were similar (NSC) to harvests between Pederson Point and the inside district marker

(Table 19). However, stock composition of harvests differed greatly (NSC) between north Naknek beach study areas and the south Naknek beach study area. Kvichak River sockeye salmon were the largest component of south Naknek beach catches, while Naknek River sockeye salmon were the largest component of north Naknek beach catches. However, because samples were taken later in the season from the south Naknek beach, it is not known whether stock composition estimates differ due to sample location or time.

Of the sockeye salmon caught in Egegik District an estimated 7,870,917 were from Egegik River, 1,673,382 from Kvichak River, 302,843 from Naknek River, and 239,811 from Ugashik River (Table 20). Estimated stock contributions to the Egegik District total catch were 78.0% from Egegik, 16.6% from Kvichak, 3.0% from Naknek, and 2.4% from Ugashik Rivers (Figure 14). All setnet catches sampled had higher percentages of Egegik River sockeye salmon than the total Egegik District catch, which was primarily harvested by drift nets (Table 21). Setnet catches south of Bishop Creek (Bishop Creek to King Salmon River) had higher percentages of Egegik River sockeye salmon than those north of Bishop Creek (Big Creek to Bishop Creek). Stock composition estimates for setnet catch samples in Egegik District in 1990 were similar to those made in 1989 (Cross et al 1992).

The Ugashik District catch was comprised of an estimated 1,581,788 sockeye salmon from Ugashik River, 444,748 from Egegik River, 110,600 from Kvichak River, and 7,132 from Naknek River (Table 22). Estimated stock contribution to the total Ugashik District sockeye salmon catch were 73.8% from Ugashik River, 20.7% from Egegik River, 5.2% from Kvichak River, and 0.3% from Naknek River (Figure 15).

#### Harvest Distribution

Of the estimated 10,668,711 Kvichak River sockeye salmon harvested in 1990, 83.3% were taken in Naknek-Kvichak, 15.7% in Egegik, and 1.0% in Ugashik Districts (Table 23). Of the estimated 7,224,527 Naknek River sockeye salmon harvested in 1990, 95.7% were taken in Naknek-Kvichak District, 4.2% in Egegik District, and 0.1% in Ugashik District. Of the estimated 8,838,852 Egegik River sockeye salmon harvested in 1990, 89.1% were taken in Egegik District, 5.9% in Naknek-Kvichak District, and 5.0% in Ugashik District. Of the estimated 2,624,756 Ugashik River sockeye salmon harvested in 1990, 60.3% were taken in Ugashik District, 30.6% in Naknek-Kvichak District, and 9.1% in Egegik District.

An estimated 2,093,957 sockeye salmon destined for Kvichak and Naknek Rivers were harvested outside their natal district, whereas Naknek-Kvichak District fishermen caught 1,327,344 sockeye salmon bound for other districts. Therefore, Naknek-Kvichak District fishermen had a potential net loss of 766,613 sockeye salmon. The number of Egegik River sockeye salmon harvested in other districts was 968,935, whereas fishermen in Egegik District caught 2,216,036 sockeye salmon bound for other districts. Therefore, Egegik District fishermen realized a net gain of 1,247,101 sockeye salmon. An estimated 1,042,968 Ugashik River sockeye salmon were harvested outside Ugashik District, whereas 562,480 sockeye salmon from other rivers were caught in Ugashik District. Therefore, Ugashik District fishermen had a net loss of 480,488 sockeye salmon.

#### Run By River System

#### Run Distribution

The 1990 Kvichak River run was estimated to be 17,638,731 sockeye salmon: 39.5% escaped, 50.4% were harvested in Naknek-Kvichak District, and 10.1% were harvested in other districts (Tables 24, 25; Figure 16). The 1990 Naknek River run was estimated to be 9,317,105 sockeye salmon: 22.5% escaped, 74.2% were harvested in Naknek-Kvichak District, and 3.3% were harvested in other districts (Figure 17). The Egegik River run was estimated to be 11,031,214 sockeye salmon: 19.9% escaped, 71.4% were harvested in Egegik District, and 8.8% were harvested in other districts (Figure 18). The Ugashik River run was estimated to be 3,354,794: 21.8% escaped, 47.2% were harvested in Ugashik District, and 31.1% were harvested in other districts (Figure 19).

#### **Exploitation Rates**

The Ugashik River run had the highest estimated rate of exploitation outside the natal district (31.1%), followed by 10.1% for Kvichak River, 8.8% for Egegik River, and 3.3 % for Naknek Rivers. Total exploitation rates -- i.e., harvests inside and outside the natal district -- were 60.5% for Kvichak River, 77.5% for Naknek River, 80.1% for Egegik River, and 78.2% for Ugashik River (Tables 24, 25; Figures 16-19).

#### **Comparison Of Run Estimates**

Run estimates based on the standard method cannot be directly compared to those based on scale pattern analysis because the Branch River stock was not included in linear discriminant models. Therefore, we adjusted standard run estimates so that the Naknek-Kvichak District catch was only divided between Kvichak and Naknek Rivers. Egegik River had the greatest difference in estimated run size between the two methods (Table 26). The standard method estimate for the Egegik River run was 1,247,101 sockeye salmon greater than that obtained from scale pattern analysis. Estimates for Naknek River differed by 703,701, with the standard method estimate being lower. Estimates for Ugashik River differed by 480,488, with the standard method estimate again being lower. The standard method estimate of run size for Kvichak River was similar to the scale pattern analysis estimate. In general, harvests of stocks outside their natal districts in 1990 resulted in the standard method over-estimating runs to Egegik River and under-estimating runs to Kvichak, Naknek, and Ugashik Rivers.

#### LITERATURE CITED

- ADF&G (Alaska Department of Fish and Game). 1991. Annual management report, 1990, Bristol Bay Area. Division of Commercial Fisheries, Regional Information Report 91-01, Anchorage.
- Bernard, D. R. 1983. Variance and bias of catch allocations that use the age composition of escapements. Alaska Department of Fish and Game, Division of Commercial Fisheries, Informational Leaflet 227, Juneau.
- Box, G. E. P. 1949. A general distribution theory for a class of likelihood criteria. Biometrika 36:317-346.
- Bue, B. G., and four coauthors. 1986. Stock composition of sockeye salmon catches sampled within east side Bristol Bay fishing districts, 1986. Alaska Department of Fish and Game, Division of Commercial Fisheries, Bristol Bay Data Report 86-10, Anchorage.
- Burns, P. N. 1991. Separation of sockeye salmon stocks in east side Bristol Bay commercial harvests, 1983-1989. Master of Science Thesis, University of Alaska Fairbanks.
- Cook, R., and G. Lord. 1978. Identification of stocks of Bristol Bay sockeye salmon by evaluating scale patterns with a polynomial discriminant method Fisheries Bulletin 76(2): 415-423.
- Cross, B. A., and B. L. Stratton. 1988. Abundance, age, sex, and size statistics for Pacific salmon in Bristol Bay, 1987. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fishery Report 88-18, Juneau.
- Cross, B. A., and B. L. Stratton. 1989. Origins of sockeye salmon in east side Bristol Bay fisheries in 1987 based on linear discriminant function analysis of scale patterns. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fishery Report 89-13, Juneau.
- Cross, B. A., and B. L. Stratton. 1991. Origins of sockeye salmon in east side Bristol Bay fisheries in 1988 based on linear discriminant function analysis of scale patterns. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fishery Report 91-09, Juneau.
- Cross, B. A., B. L. Stratton, and J. D. Miller. 1992. Origins of sockeye salmon in east side Bristol Bay fisheries in 1989 based on linear discriminant function analysis of scale patterns. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fishery Report 92-03, Juneau.
- Enslein, K., A. Ralston, and H. Wilf, editors. 1977. Statistical methods for digital computers. John Wiley & Sons, Inc. New York.
- Fisher, R. 1936. The use of multiple measurements in taxonomic problems. Annual Eugenics 7:179-188.
- Fried, S. F., and H. J. Yuen. 1985. Stock composition of sockeye salmon catches sampled within east side Bristol Bay fishing districts: a preliminary study using scale pattern characteristics to identify stocks. Alaska Department of Fish and Game, Division of Commercial Fisheries, Bristol Bay Area Data Report 85-14, Anchorage.

#### LITERATURE CITED (Continued)

- Goodman, L. 1960. On the exact variance of products. Journal of the American Statistical Association 55:708-713.
- Koo, T. S. Y. 1962. Age designation in salmon. Pages 37-48 in T. S. Y. Koo, editor. Studies of Alaska red salmon. University of Washington Publications in Fisheries, New Series, Volume I, Seattle, Washington.
- Lachenbruch, P. 1967. An almost unbiased method of obtaining confidence intervals for the probability of misclassification in discriminant analysis. Biometrics 23(4):639-645.
- Pella, J., and T. Robertson. 1979. Assessment of composition of stock mixtures. Fishery Bulletin 77(2):387-398.
- Ryan, P., and M. Christie. 1976. Scale reading equipment. Fisheries and Marine Service, Canada, Technical Report PAC/T-75-8, Nanaimo, British Columbia.
- Stratton, B. L. 1990. Abundance, age, sex, and size statistics for Pacific salmon in Bristol Bay, 1989. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fishery Report 90-09, Juneau.
- Stratton, B. L. 1991. Abundance, age, sex, and size statistics for Pacific salmon in Bristol Bay, 1990. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fishery Report 91-15, Juneau.
- Stratton, B. L., and B. A. Cross. 1990. Abundance, age, sex, and size statistics for Pacific salmon in Bristol Bay, 1988. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fishery Report 90-06, Juneau.
- Straty, R. R. 1975. Migratory routes of adult sockeye salmon, *Oncorhynchus nerka*, in the Eastern Bering Sea and Bristol Bay. National Oceanic and Atmospheric Administration Technical Report NMFS SSRF-690, Seattle, WA.
- Thompson, S. 1987. Sample size for estimating multinomial proportions. The American Statistician 41:42-46.
- Yuen, H. J., and D. L. Bill. 1989a. Abundance, age, sex, and size statistics for Pacific salmon in Bristol Bay, 1984. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fishery Report 89-06, Juneau.
- Yuen, H. J., and D. L. Bill. 1989b. Abundance, age, sex, and size statistics for Pacific salmon in Bristol Bay, 1985. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fishery Report 89-07, Juneau.

#### LITERATURE CITED (Continued)

- Yuen, H. J., and D. L. Bill. 1990. Abundance, age, sex, and size statistics for Pacific salmon in Bristol Bay, 1986. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fishery Report 90-14, Juneau.
- Yuen, H. J., and M. L. Nelson. 1987. 1983 Bristol Bay salmon (*Oncorhynchus* sp.) a compilation of catch, escapement, and biological data. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 191, Juneau.

Table 1. Scale variables screened for linear discriminant function analysis of age-2.2, -1.3, and -2.3 sockeye salmon for the East Side of Bristol Bay, 1990.

| Variable<br>Number | Variable<br>Name      | Zone                                                                                   |
|--------------------|-----------------------|----------------------------------------------------------------------------------------|
| <br>               |                       | <u>First Freshwater Annular Zone</u>                                                   |
| 1                  | NC1FW                 | Number of circuli first freshwater                                                     |
| 2                  | S1FW                  | Size (width) of first freshwater                                                       |
| 3 (16)             | c0-c2                 | Distance, scale focus (CO) to circulus 2 (C2)                                          |
| 4 (17)             | CO-C4                 | Distance, scale focus to circulus 4                                                    |
| 5 (18)             | co-c6                 | Distance, scale focus to circulus 6                                                    |
| 6 (19)             | CO-C8                 | Distance, scale focus to circulus 8                                                    |
| 7 (20)             | C2-C4                 | Distance, circulus 2 to circulus 4                                                     |
| 8 (21)             | C2-C6                 | Distance, circulus 2 to circulus 6                                                     |
| 9 (22)<br>10 (23)  | C2-C8                 | Distance, circulus 2 to circulus 8                                                     |
| 11 (24)            | C4-C6<br>C4-C8        | Distance, circulus 4 to circulus 6 Distance, circulus 4 to circulus 8                  |
| 12 (25)            | C(NC-4)-E1FW          | Distance, circulus (number circuli first freshwater                                    |
| 12 (23)            | C(NC 4) EIIW          | minus 2) to end first freshwater                                                       |
| 13 (26)            | C(NC-2)-E1FW          | Distance, circulus (number circuli first freshwater                                    |
| (==,               | 200 -7 -000           | minus 4) to end first freshwater                                                       |
| 14                 | C2-E1FW               | Distance, circulus 2 to end first freshwater                                           |
| 15                 | C4-E1FW               | Distance, circulus 4 to end first freshwater                                           |
| 16 thru            | CO-C2/S1FW            | Relative widths, (variables 3-13)/S1FW                                                 |
| 26                 | C(NC-2)-E1FW/S1FW     |                                                                                        |
| 27                 | S1FW/NC1FW            | Average interval between circuli in first freshwater                                   |
| 28                 | NC 1ST 3/4            | Number of circuli in first 3/4 of first freshwater                                     |
| 29                 | MAX DIST              | Maximum distance between 2 consecutive circuli in                                      |
| 70                 |                       | first freshwater                                                                       |
| 30                 | MAX DIST/S1FW         | Relative width, (variable 29)/S1FW                                                     |
|                    |                       | Second Freshwater Annular Zone                                                         |
| 31                 | NC2FW                 | Number of circuli second freshwater                                                    |
| 32                 | S2FW                  | Size (width) of second freshwater                                                      |
| 33 (46)            | E1FW-C2               | Distance, end of first freshwater to circulus 2 (C2) in second freshwater              |
| 34 (47)            | E1FW-C4               | Distance, end of first freshwater to circulus 4                                        |
| 35 (48)            | E1FW-C6               | Distance, end of first freshwater to circulus 6                                        |
| 36 (49)            | E1FW-C8               | Distance, end of first freshwater to circulus 8                                        |
| 37 (50)            | C2-C4                 | Distance, circulus 2 to circulus 4                                                     |
| 38 (51)            | C2-C6                 | Distance, circulus 2 to circulus 6                                                     |
| 39 (52)            | C2-C8                 | Distance, circulus 2 to circulus 8                                                     |
| 40 (53)            | C4-C6                 | Distance, circulus 4 to circulus 6                                                     |
| 41 (54)<br>42 (55) | C4-C8<br>C(NC~4)-E2FW | Distance, circulus 4 to circulus 8                                                     |
| 42 (33)            | C(NC-4)-E2FW          | Distance, circulus (number circuli second freshwater minus 4) to end second freshwater |
| 43 (56)            | C(NC-2)-E2FW          | Distance, circulus (number circuli second freshwater                                   |
| 43 (30)            | C(NC E) LEIW          | minus 2) to end second freshwater                                                      |
| 44                 | C2-E2FW               | Distance, circulus 2 to end second freshwater                                          |
| 45                 | C4-E2FW               | Distance, circulus 4 to end second freshwater                                          |
| 46 thru            | E1FW-C2/S2FW          | Relative widths, (variables 33-43)/S2FW                                                |
| 56                 | C(NC-2)-E2FW/S2FW     |                                                                                        |
| 57                 | S2FW/NC2FW            | Average interval between circuli in second freshwater                                  |
| 58                 | NC 1ST 3/4            | Number of circuli in first 3/4 of second freshwater                                    |
| 59                 | MAX DIST              | Maximum distance between 2 consecutive circuli in                                      |
|                    |                       |                                                                                        |
| 60                 | MAX DIST/S2FW         | second freshwater Relative width, (variable 59)/S2FW                                   |

-Continued-

Table 1. (p 2 of 2).

| Variable<br>Number                                                                                                                                                | Variable<br>Name                                                                                                                                                                                                                                                                  | Zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                   | Plus Growth Zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 61<br>62                                                                                                                                                          | NCPG<br>SPGZ                                                                                                                                                                                                                                                                      | Number of circuli in plus growth<br>Size (width) plus growth zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                   | Freshwater and Plus Growth Zones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 63<br>64<br>65                                                                                                                                                    | NC1FW + NC2FW<br>S1FW + S2FW<br>NC1FW+NC2FW+NCPG                                                                                                                                                                                                                                  | Total number of circuli first and second freshwater<br>Total size (width) of first and second freshwater<br>Total number of circuli first and second freshwater<br>and plus growth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 66                                                                                                                                                                | S1FW+S2FW+SPGZ                                                                                                                                                                                                                                                                    | Total size (width) first and second freshwater and plus growth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 67<br>68<br>69                                                                                                                                                    | SPGZ/S1FW+S2FW+SPGZ                                                                                                                                                                                                                                                               | Relative width, (variable 2)/S1FW+S2FW+SPGZ<br>Relative width, (variable 62)/S1FW+S2FW+SPGZ<br>Relative width, (variable 32)/S1FW+S2FW+SPGZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                   | First Marine Annular Zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 70 71 72 (90) 73 (91) 74 (92) 75 (93) 76 (94) 77 (95) 78 (96) 79 (97) 80 (98) 81 (99) 82 (100) 83 (101) 84 (102) 85 (103)  86 (104)  87 88 89 90 thru 104 105 106 | NC10Z<br>S10Z<br>EFW-C3<br>EFW-C6<br>EFW-C6<br>EFW-C9<br>EFW-C15<br>C3-C6<br>C3-C9<br>C3-C12<br>C3-C15<br>C6-C9<br>C6-C12<br>C6-C15<br>C9-C15<br>C(NC-6)-E10Z<br>C(NC-3)-E130Z<br>C3-E10Z<br>C9-E10Z<br>C15-E10Z<br>EFW-C3/S10Z<br>C(NC-3)-E130Z/S10Z<br>S10Z/NC10Z<br>NC 1ST 1/2 | Number of circuli in first ocean zone Size (width) first ocean zone Distance, end of freshwater growth to circulus 3 Distance, end of freshwater growth to circulus 6 Distance, end of freshwater growth to circulus 9 Distance, end of freshwater growth to circulus 12 Distance, end of freshwater growth to circulus 15 Distance, circulus 3 to circulus 6 Distance, circulus 3 to circulus 9 Distance, circulus 3 to circulus 12 Distance, circulus 3 to circulus 15 Distance, circulus 6 to circulus 15 Distance, circulus 6 to circulus 15 Distance, circulus 6 to circulus 15 Distance, circulus 9 to circulus 15 Distance, circulus (number circuli first ocean minus 6) to end first ocean Distance, circulus 3 to end of first ocean Distance, circulus 9 to end of first ocean Distance, circulus 15 to end of first ocean Relative widths, (variables 72-86)/S102  Average interval between circuli in first ocean |
| 107                                                                                                                                                               | MAX DIST  MAX DIST/S10Z                                                                                                                                                                                                                                                           | Maximum distance between 2 consecutive circuli in first ocean Relative width, (variable 107)/S102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100                                                                                                                                                               | PIAN DIST/3102                                                                                                                                                                                                                                                                    | Second Marine Annular Zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 109                                                                                                                                                               | S20Z                                                                                                                                                                                                                                                                              | Size (width) of second ocean zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Table 2. Sockeye salmon commercial catch by district and date for the East Side of Bristol Bay, 1990.

|           |                | Catch (Nos.         | of Fish) <sup>a</sup>       |            |
|-----------|----------------|---------------------|-----------------------------|------------|
| Date      | Naknek/Kvichak | Egegik              | Ugashik                     | East Sid   |
| 6/04-6/16 | 4,176          | 9,781               | 1,186                       | 15,143     |
| 6/18      | 15,789         | 175 <sup>b</sup>    | 7,067                       | 23,031     |
| 6/19      | 19,534         | 324 <sup>b</sup>    | 11,933                      | 31,79      |
| 6/20      | 25,096         | 904 <sup>b</sup>    | 14,645                      | 40,64      |
| 6/21      | 53,679         | 69,087              | 3,272                       | 126,038    |
| 6/22      | 67,100         | <sup>245</sup> ,    | 9,955                       | 77,300     |
| 5/23-6/27 | ,              | 15,102 <sup>b</sup> | 37 <sup>b</sup>             | 15,40      |
| 6/28      | 72,536         | 37,589              |                             | 110,12     |
| 6/29      | 742,371        | 314,741             | 283 <sup>b</sup>            | 1,057,39   |
| 6/30      | 960,844        | 7,872 <sup>b</sup>  |                             | 968,71     |
| 7/01      | 29,920         | 5,076 <sup>b</sup>  |                             | 34,99      |
| 7/02      | 838,159        | 1,204,893           | 1,177 <sup>b</sup>          | 2,044,229  |
| 7/03      | 2,107,281      | 1,114,046           | 951 <sup>b</sup>            | 3,222,27   |
| 7/04      | 885,168        | 81,104              | 217,837                     | 1,184,10   |
| 7/05      | 2,042,522      | 793,064             | 217,007                     | 2,835,58   |
| 7/06      | 851,431        | 1,205,186           | 1,442 <sup>b</sup>          | 2,058,05   |
| 7/07      | 1,091,576      | 424,006             | 1,137 <sup>b</sup>          |            |
| 7/08      | 758,625        | 979,918             |                             | 1,516,719  |
| 7/09      | 1,070,849      | 373,310             | 302,161                     | 2,040,70   |
| 7/10      | 444,118        | 1 17/ 215           | 437,275<br>199 <sup>b</sup> | 1,508,12   |
| 7/11      |                | 1,174,215           |                             | 1,618,53   |
| 7/12-7/13 | 1,229,946      | 1 022 012           | 356,354                     | 1,586,30   |
|           | 1,343,793      | 1,032,813           | 1,517                       | 2,378,12   |
| 7/14      | 543,572        | 532,527             | 70,256                      | 1,146,35   |
| 7/15      | 648,605        | 94,760              | 192,260                     | 935,62     |
| 7/16      | 333,826        | 294,086             | 1,513 <sup>b</sup>          | 629,42     |
| 7/17      | 321,410        | 191,548             | 196,703                     | 709,66     |
| 7/18      | 178,743        | 148,266             | 93,240                      | 420,24     |
| 7/19      | 148,908        | 132,333             | 74,670                      | 355,91     |
| 7/20      | 122,647        | 56,560              | 32,304                      | 211,51     |
| 7/21      | 41,335         | 42,016              | 28,744                      | 112,09     |
| 7/22      |                | 28,293              | 18,670                      | 46,96      |
| 7/23-7/27 | 109,041        | 76,905              | 42,820                      | 228,76     |
| 7/30-8/03 | 18,778         | 14,166              | 18,756                      | 51,70      |
| 3/06-8/10 | 4,558          | 4,025               | 4,215                       | 12,79      |
| 3/13-9/07 | 687            | 1,065               | 1,689                       | 3,44       |
| Total     | 17,126,625     | 10,086,953          | 2,144,268                   | 29,357,846 |
| Percent   | 58.3           | 34.4                | 7.3                         | 100.       |

<sup>&</sup>lt;sup>a</sup> Blanks indicate a district was closed.

b ADF&G test fish catch

Table 3. Sockeye salmon escapement by river and date for the East Side of Bristol Bay, 1990.

|       | Kvich     | ak River   | Nakn      | ek River   | Egeg      | ik River   | Ugash    | ik River    |
|-------|-----------|------------|-----------|------------|-----------|------------|----------|-------------|
| Date  | Daily     | Cumulative | Daily     | Cumulative | Daily     | Cumulative | Daily    | Cumulative  |
| 06/21 |           |            |           |            | 60        | 60         |          |             |
| 06/22 |           |            |           |            | 24        | 84         |          |             |
| 06/23 |           |            | 6,126     | 7,284      | 0         | 84         |          |             |
| 06/24 |           |            | 2,190     | 9,474      | 642       |            |          |             |
| 06/25 | 942       | 942        | 3,762     | 13,236     | 1,194     | 1,920      |          |             |
| 06/26 | 1,110     | 2,052      | 69,396    |            | 1,218     | 3,138      |          |             |
| 06/27 | 1,350     |            | 17,496    |            | 720       |            |          |             |
| 06/28 | 2,232     |            | 27,606    |            | 5,142     |            |          |             |
| 06/29 | 2,694     |            | 146,736   |            | 14,832    |            |          |             |
| 06/30 | 31,104    |            | 146,694   | 421,164    | 27,126    | 50,958     |          |             |
| 07/01 | 6,228     | 45,660     | 137,100   |            | 41,208    |            |          |             |
| 07/02 | 173,064   | 218,724    | 285,234   | 843,498    | 261,582   |            |          |             |
| 07/03 | 606,654   | 825,378    | 75,528    | 919,026    | 334,050   | 687,798    | 474      | 474         |
| 07/04 | 586,980   |            | 158,478   |            | 349,668   |            | 774      | 1,248       |
| 07/05 | 461,508   | 1,873,866  | 108,486   |            | 138,978   |            | 1,404    | 2,652       |
| 07/06 | 525,504   | 2,399,370  | 174,054   | 1,360,044  | 137,634   |            | 2,484    | 5,136       |
| 07/07 | 502,110   | 2,901,480  | 113,286   |            | 73,416    | 1,387,494  | 816      | 5,952       |
| 07/08 | 607,410   | 3,508,890  | 45,426    |            | 51,636    | •          | 11,316   | 17,268      |
| 07/09 | 552,180   |            | 34,362    |            | 28,644    |            | 21,192   | 38,460      |
| 07/10 | 630,690   | 4,691,760  | 58,086    | 1,611,204  | 68,520    | 1,536,294  | 28,512   | 66,972      |
| 07/11 | . 389,130 |            | 91,866    | 1,703,070  | 58,986    |            | 52,932   | 119,904     |
| 07/12 | 307,350   | 5,388,240  | 79,524    | 1,782,594  | 142,782   | 1,738,062  | 88,320   | 208,224     |
| 07/13 | 414,600   |            | 54,324    | 1,836,918  | 119,226   | 1,857,288  | 119,148  | 327,372     |
| 07/14 | 405,150   | 6,207,990  | 34,152    | 1,871,070  | 76,122    | 1,933,410  | 98,910   | 426,282     |
| 07/15 | 210,108   |            | 26,304    |            | 52,758    | 1,986,168  | 55,200   | 481,482     |
| 07/16 | 91,980    |            | 38,646    |            | 118,032   |            | 51,414   | 532,896     |
| 07/17 | 93,360    | 6,603,438  | 36,678    |            | 23,718    | 2,127,918  | 32,592   | 565,488     |
| 07/18 | 70,434    |            | 22,470    |            | 13,254    |            | 57,162   | 622,650     |
| 07/19 | 58,692    |            | 17,280    |            | 13,890    |            | 29,988   | 652,638     |
| 07/20 | 48,510    | 6,781,074  | 20,934    |            | 15,612    |            | 15,666   | 668,304     |
| 07/21 | 46,056    |            | 17,010    |            | 5,874     |            | 13,992   | 682,296     |
| 07/22 | 48,876    |            | 14,064    |            | 5,034     |            | 7,428    | 689,724     |
| 07/23 | 38,748    |            | 18,636    |            | 4,056     |            | 2,604    | 692,328     |
| 07/24 | 26,706    |            | 9,486     | -2,092,578 | 3,852     |            | 4,470    | 696,798     |
| 07/25 | 28,560    | 6,970,020  |           |            | 1,872     | 2,191,362  | 3,018    | 699,816     |
| 07/26 |           |            |           |            |           |            | 3,438    | 703,254     |
| 07/27 |           |            |           |            |           |            | 7,104    | 710,358     |
| 07/28 |           |            |           |            |           |            | 9,870    | 720,228     |
| 07/29 |           |            |           | ***        | , ?       |            | 9,810    | 730,038     |
| Total | 6,970,020 |            | 2,092,578 |            | 2,191,362 | a          | 730,038° | <del></del> |

<sup>&</sup>lt;sup>a</sup> An additional 220 sockeye salmon were counted in the King Salmon River drainage, bringing the Egegik District sockeye salmon escapement total to 2,191,582.

An additional 8,100 and 11,340 sockeye salmon were counted in Dog Salmon and King Salmon River drainages, bringing the Ugashik District sockeye salmon escapement total to 749,478.

Table 4. Sockeye salmon age composition by brood year in the commercial catch for the East Side of Bristol Bay, 1990.

|                    |                |                          | 1987                   |                        | 1986                        |                    |                             | 1985                        |                        | 1984                        |                          |                                          | 1983                   |                     |
|--------------------|----------------|--------------------------|------------------------|------------------------|-----------------------------|--------------------|-----------------------------|-----------------------------|------------------------|-----------------------------|--------------------------|------------------------------------------|------------------------|---------------------|
| District           | Sample<br>Size |                          | 0.2                    | 0.3                    | 1.2                         | 2.1                | 1.3                         | 2.2                         | 1.4                    | 2.3                         | 3.2                      | 2.4                                      | 3.3                    | -<br>Total          |
| Naknek/<br>Kvichak | 7,527          | Numbers<br>Percent<br>SE | 18,651<br>0.1<br>6,240 | 22,029<br>0.1<br>8,821 | 1,985,272<br>11.6<br>60,524 | 0.0                |                             | 7,702,820<br>45.0<br>98,181 | 19,827<br>0.1<br>6,240 | 3,491,358<br>20.4<br>79,848 | 12,627<br>0.1<br>6,240   | -, -, -, -, -, -, -, -, -, -, -, -, -, - | 2,020<br>0.0°<br>2,988 | 17,126,625<br>100.0 |
| Egegik             | 5,258          | Numbers<br>Percent<br>SE | 167<br>0.0ª<br>164     | 13,054<br>0.1<br>6,215 | 1,203,574<br>11.9<br>46,010 | 167<br>0.0°<br>164 | 1,215,720<br>12.1<br>46,167 | 3,248,740<br>32.2<br>66,133 | 9,369<br>0.1<br>4,397  | 4,192,760<br>41.6<br>67,629 | 166,725<br>1.6<br>16,910 | 21,097<br>0.2<br>6,215                   | 15,580<br>0.2<br>4,397 | 10,086,953<br>100.0 |
| Ugashik            | 2,650          | Numbers<br>Percent<br>SE | 2,955<br>0.1<br>1,861  | 25,503<br>1.2<br>7,218 | 318,815<br>14.8<br>14,451   |                    | 516,656<br>24.2<br>18,105   | 673,465<br>31.3<br>18,878   | 12,557<br>0.6<br>2,278 | 590,690<br>27.7<br>18,699   | 2,907<br>0.1<br>1,861    | 720<br>0.0°<br>1,371                     |                        | 2,144,268<br>100.0  |
| Total              | 15,435         | Numbers<br>Percent       | 21,773                 | 60,586<br>0.2          | 3,507,661<br>12.0           | 4,270<br>0.0°      | 5,600,294<br>19.1           | 11,625,025<br>39.6          | 41,753<br>0.1          | 8,274,808<br>28.2           | 182,259<br>0.6           | 21,817<br>0.1                            | 17,600<br>0.0°         | 29,357,846<br>100.0 |

<sup>\*</sup> Represented < 0.1%</pre>

Table 5. Sockeye salmon age composition by brood year in the escapement for the East Side of Bristol Bay, 1990.

|         |                |                    | 1             | 987           |               | 1986            |               |             | 1985            |                   |              | 198             | 34            | 1983                 |                    |
|---------|----------------|--------------------|---------------|---------------|---------------|-----------------|---------------|-------------|-----------------|-------------------|--------------|-----------------|---------------|----------------------|--------------------|
| River   | Sample<br>Size |                    | 0.2           | 1.1           | 0.3           | 1.2             | 2.1           | 0.4         | 1.3             | 2.2               | 1.4          | 2.3             | 3.2           | 2.4 3.3              | Total              |
| Kvichak | 2,912          | Numbers<br>Percent | 11,107<br>0.2 | 3,530<br>0.0° | 8,060<br>0.1  | 211,062         |               |             | 234,020         | 6,101,908<br>87.6 |              | 397,935<br>5.7  |               | 2,398<br>0.0°        | 6,970,020<br>100.0 |
| Naknek  | 3,523          | Numbers<br>Percent | 836<br>0.0°   |               | 1,540<br>0.1  | 587,225<br>28.1 | 2,065<br>0.1  | 587<br>0.0° | 639,524<br>30.6 | 577,631<br>27.6   | 1,706<br>0.1 | 281,464<br>13.4 |               |                      | 2,092,578<br>100.0 |
| Egegik  | 3,584          | Numbers<br>Percent | 1,890<br>0.1  |               | 349<br>0.0°   | 553,754<br>25.3 | 10,039<br>0.5 |             | 114,787<br>5.2  | 918,871<br>42.0   | 164<br>0.0ª  |                 | 42,159<br>1.9 | 991 349<br>0.0° 0.0° | 2,191,362<br>100.0 |
| Ugashik | 2,335          | Numbers<br>Percent | 3,527<br>0.5  | 492<br>0.1    | 19,161<br>2.6 | 161,531<br>22.1 | 743<br>0.1    |             | 174,878<br>23.9 | 276,080<br>37.8   |              | 93,626<br>12.9  |               |                      | 730,038<br>100.0   |

a Represented < 0.1%

Table 6. Mean and standard error of age-2.2 scale variables used to construct linear discriminant functions for the East Side of Bristol Bay, 1990.

|                    |                                         | Kvi               | chak  | Nak    | nek   | Ege                   | gik   | Uga                   | shik  |
|--------------------|-----------------------------------------|-------------------|-------|--------|-------|-----------------------|-------|-----------------------|-------|
| Variable<br>Number | Variable<br>Name                        | Mean <sup>a</sup> | SE    | Mean   | SE    | <br>Mean <sup>a</sup> | SE    | <br>Mean <sup>a</sup> | SE    |
| First Fre          | shwater Annular Zone                    |                   |       |        |       |                       |       |                       |       |
| 8                  | C2-C6                                   | 46.01             | 0.373 | 46.57  | 0.450 | 47.79                 | 0.415 | 40.00                 | 0.347 |
| 10                 | C4-C6                                   | 20.87             | 0.240 | 20.96  | 0.248 | 21.76                 | 0.236 | 18.19                 | 0.195 |
| 14                 | C2-E1FW                                 | 58.12             | 0.812 | 71.24  | 1.561 | 90.61                 | 1.956 | 62.40                 | 1.155 |
| 15                 | C4-E1FW                                 | 33.00             | 0.772 | 46.02  | 1.410 | 64.58                 | 1.840 | 40.59                 | 1.074 |
| 18                 | CO-C6/S1FW                              | 0.89              | 0.005 | 0.81   | 0.008 | 0.72                  | 0.008 | 0.81                  | 0.007 |
| 23                 | C4-C6/S1FW                              | 0.19              | 0.002 | 0.18   | 0.002 | 0.16                  | 0.002 | 0.17                  | 0.002 |
| 27                 | S1FW/NC1FW                              | 14.26             | 0.097 | 13.44  | 0.094 | 13.08                 | 0.069 | 12.41                 | 0.081 |
| 29                 | MAX DIST.                               | 14.61             | 0.115 | 14.62  | 0.147 | 15.03                 | 0.130 | 13.18                 | 0.133 |
| Second Fr          | eshwater Annular Zone                   |                   |       |        |       |                       |       |                       |       |
| 32                 | S2FW                                    | 94.97             | 1.074 | 120.11 | 1.322 | 133.43                | 1.186 | 123.13                | 1.187 |
| 35                 | E1FW-C6                                 | 65.57             | 0.431 | 68.52  | 0.448 | 69.58                 | 0.480 | 73.43                 | 0.517 |
| 38                 | C2-C6                                   | 44.64             | 0.375 | 46.99  | 0.353 | 48.35                 | 0.383 | 51.27                 | 0.414 |
| 42                 | C(NC-4)-E2FW                            | 33.91             | 0.323 | 34.99  | 0.329 | 38.99                 | 0.352 | 34.84                 | 0.344 |
| 44                 | C2-E2FW                                 | 74.03             | 1.079 | 98.58  | 1.291 | 112.20                | 1.189 | 100.97                | 1.211 |
| 51                 | C2-C6/S2FW                              | 0.48              | 0.004 | 0.40   | 0.005 | 0.37                  | 0.004 | 0.42                  | 0.004 |
| 55                 | VAR 42/S2FW                             | 0.37              | 0.005 | 0.30   | 0.005 | 0.30                  | 0.004 | 0.29                  | 0.004 |
| 57                 | S2FW/NC2FW                              | 9.96              | 0.059 | 10.45  | 0.055 | 11.09                 | 0.058 | 10.90                 | 0.061 |
| Freshwate          | r and Plus Growth Zones                 | <u>3</u>          |       |        |       |                       |       |                       |       |
| 63                 | NC1+NC2                                 | 17.14             | 0.106 | 20.47  | 0.144 | 22.86                 | 0.149 | 20.26                 | 0.139 |
| 65                 | NC1FW+NC2FW+NCPG                        | 18.43             | 0.105 | 21.86  | 0.142 | 23.85                 | 0.146 | 21.38                 | 0.142 |
| 66                 | S1FW+S2FW+SPGZ                          | 214.03            | 1.262 | 252.84 | 1.696 | 283.19                | 1.996 | 243.17                | 1.575 |
| First Mar          | ine Annular Zone                        |                   |       |        |       |                       |       |                       |       |
| 71                 | S10Z                                    | 434.01            | 2.737 | 407.70 | 2.790 | 408.01                | 2.580 | 416.42                | 2.500 |
| 72                 | EFW-C3                                  | 52.32             | 0.661 | 50.55  | 0.707 | 56.20                 | 0.671 | 54.44                 | 0.630 |
| 73                 | EFW-C6                                  | 123.06            | 0.937 | 121.54 | 0.988 | 129.13                | 0.860 | 124 63                | 0.826 |
| 80                 | c3-c15                                  | 259.66            | 1.357 | 255.92 | 1.265 | 253.84                | 1.306 | 255.87                | 1.255 |
| 104                | (C(NC-3)-E10Z)/S10Z                     | 0.09              | 0.001 | 0.10   | 0.001 | 0.10                  | 0.001 | 0.10                  | 0.001 |
|                    | , , , , , , , , , , , , , , , , , , , , | /                 |       |        |       |                       |       |                       |       |

Scale images projected at 100x magnification and measured at 0.01 in; therefore, variable means are in 0.0001 in.

Table 7. Mean, variance, and t-statistic comparing males and females for selected scale variables of age-2.2 sockeye salmon sampled from Kvichak, Naknek, Egegik, and Ugashik Rivers, 1990.

| River         | Sex         |                     | S1FW             | S2FW             | SPGZ           | S1FW+S2FW+<br>SPGZ | s1oz               |
|---------------|-------------|---------------------|------------------|------------------|----------------|--------------------|--------------------|
| Kvichak River | Male        | Sample Size         | 87               | 87               | 76             | 87                 | 87                 |
|               |             | Mean<br>Variance    | 106.36<br>145.65 | 94.90<br>172.14  | 13.97<br>41.89 | 213.46<br>287.81   | 447.02<br>1,503.77 |
|               |             | Tan Tanio           | 115105           |                  | 11107          | 201101             | 1,505.11           |
|               | Female      | Sample Size         | 113              | 113              | 92             | 113                | 113                |
|               |             | Mean                | 107.16           | 95.02            | 13.70          | 214.46             | 423.98             |
|               |             | Variance            | 151.17           | 277.77           | 48.04          | 344.36             | 1,275.07           |
|               | Combined    | Sample Size         | 200              | 200              | 168            | 200                | 200                |
|               |             | Mean                | 107.45           | 94.97            | 13.82          | 214.03             | 434.01             |
|               |             | Variance            | 145.12           | 230.73           | 45.01          | 318.44             | 1,498.63           |
|               | T-Statistic |                     | -0.46            | -0.06            | 0.27           | -0.39              | 4.36               |
| Nakaak Diyan  | Mala        | Carrella Cima       | 121              | 121              | 10/            | 131                | 121                |
| Naknek River  | Male        | Sample Size         | 121              | 121              | 104            | 121                | 121<br>411.88      |
|               |             | Mean<br>Variance    | 119.21<br>515.37 | 119.74<br>347.66 | 15.37<br>72.23 | 252.17<br>561.52   | 1,399.61           |
|               |             | varrance            | 10.01            | 341.00           | 12.23          | 301.32             | 1,399.01           |
|               | Female      | Sample Size         | 79               | 79               | 73             | 79                 | 79                 |
|               |             | Mean                | 119.67           | 121.10           | 15.48          | 253.43             | 401.47             |
|               |             | Variance            | 551.78           | 356.66           | 61.64          | 601.86             | 1,751.47           |
|               | Combined    | Sample Size         | 200              | 200              | 177            | 200                | 200                |
|               |             | Mean                | 119.09           | 120.11           | 15.41          | 252.84             | 407.70             |
|               |             | Variance            | 527.08           | 349.65           | 67.49          | 5 <i>7</i> 5.21    | 1,557.34           |
|               | T-Statistic |                     | -0.46            | -0.14            | -0.09          | -0.36              | 1.86               |
| Emanik Diva-  | Mata        | 0                   | 00               | 00               | 40             | 92                 | 00                 |
| Egegik River  | Male        | Sample Size<br>Mean | 82<br>138.89     | 82<br>133,11     | 69<br>11.52    | 82<br>281.70       | 82<br>415.27       |
|               |             | Variance            | 885.83           | 340.25           | 26.31          | 847.89             | 1,383.19           |
|               |             | Vat faile           | 66.60            | 340.23           | 20.31          | 047.09             | 1,303.19           |
|               | Female      | Sample Size         | 118              | 118              | 95             | 118                | 118                |
|               |             | Mean                | 141.35           | 133.64           | 11.46          | 284.22             | 402.96             |
|               |             | Variance            | 798.90           | 242.66           | 16.93          | 764.99             | 1,244.13           |
|               | Combined    | Sample Size         | 200              | 200              | 164            | 200                | 200                |
|               |             | Mean                | 140.34           | 133.43           | 11.49          | 283.19             | 408.01             |
|               |             | Variance            | 831.73           | 281.23           | 20.74          | 796.44             | 1,331.32           |
|               |             |                     |                  |                  |                |                    |                    |

-Continued-

Table 7. (p 2 of 2).

|               |             |             |        |        |       | S1FW+S2FW- | +        |
|---------------|-------------|-------------|--------|--------|-------|------------|----------|
| River .       | Sex         |             | S1FW   | S2FW   | SPGZ  | SPGZ       | s1oz     |
| Ugashik River | Male        | Sample Size | 86     | 86     | 75    | 86         | 86       |
|               |             | Mean        | 110.07 | 123.88 | 11.76 | 244.21     | 427.17   |
|               |             | Variance    | 300.47 | 321.99 | 21.86 | 584.54     | 1,096.99 |
|               | Female      | Sample Size | 114    | 114    | 99    | 114        | 114      |
|               |             | Mean        | 109.58 | 122.55 | 11.18 | 242.39     | 408.30   |
|               |             | Variance    | 338.88 | 253.35 | 24.79 | 432.52     | 1,222.39 |
|               | Combined    | Sample Size | 200    | 200    | 174   | 200        | 200      |
|               |             | Mean        | 109.79 | 123.13 | 11.79 | 243.17     | 416.42   |
|               |             | Variance    | 320.83 | 281.83 | 23.39 | 496.10     | 1,250.46 |
|               | T-Statistic |             | 0.19   | 0.55   | -0.06 | 0.57       | 3.87     |

a Significant at  $\alpha = 0.05$ 

Table 8. Classification matrices from discriminant analyses of age-2.2 sockeye salmon sampled from Kvichak, Naknek, Egegik, and Ugashik Rivers, 1990.

| Actual Group<br>Of Origin              | Sample<br>Size           | Classified Group of Origin (%) |                             |                                   |                            |  |  |
|----------------------------------------|--------------------------|--------------------------------|-----------------------------|-----------------------------------|----------------------------|--|--|
|                                        |                          | <u>Kvichak</u>                 | <u>Naknek</u>               | <u>Egegik</u>                     | <u>Ugashik</u>             |  |  |
| Kvichak<br>Naknek<br>Egegik<br>Ugashik | 197<br>197<br>200<br>199 | 87.3<br>9.6<br>1.0<br>7.0      | 7.1<br>60.9<br>14.5<br>13.1 | 0.0<br>15.7<br><u>76.5</u><br>4.5 | 5.6<br>13.7<br>8.0<br>75.4 |  |  |

Mean classification accuracy = 75.0%

Variables used: 63,8,57,35,71,51,27,66,72,38,23

Box's Test of Variance-Covariance Equality<sup>a</sup>

F-statistic = 3.32D.F. = 198, 1,339,183

P = 0.00

| Actual Group<br>Of Origin   | Sample<br>Size    | Classified Group of Origin (%) |                     |                            |  |
|-----------------------------|-------------------|--------------------------------|---------------------|----------------------------|--|
|                             |                   | <u>Kvichak</u>                 | <u>Naknek</u>       | <u>Egegik</u>              |  |
| Kvichak<br>Naknek<br>Egegik | 197<br>196<br>200 | 90.9<br>11.7<br>1.0            | 8.6<br>68.4<br>14.5 | 0.5<br>19.9<br><u>84.5</u> |  |

Mean classification accuracy = 81.2%

Variables used: 63,71,65,57,35,73,104,80,51,10,18 Box's Test of Variance-Covariance Equality

F-statistic = 2.42

D.F. = 132, 933337

P = 0.00

Table 8. (p 2 of 4).

| Actual Group<br>Of Origin    | Sample<br>Size    | Classified Gr       | fied Group of Origin (%) |                            |  |  |
|------------------------------|-------------------|---------------------|--------------------------|----------------------------|--|--|
|                              |                   | <u>Kvichak</u>      | <u>Naknek</u>            | <u>Ugashik</u>             |  |  |
| Kvichak<br>Naknek<br>Ugashik | 197<br>197<br>199 | 88.8<br>11.2<br>8.5 | 6.1<br>74.6<br>13.6      | 5.1<br>14.2<br><u>77.9</u> |  |  |

Mean classification accuracy = 80.4%

Variables used: 63,8,57,71,51,65,72,15,18,10

Box's Test of Variance-Covariance Equality

F-statistic = 4.81D.F. = 110, 942,038 P = 0.00

| Actual Group<br>Of Origin    | Sample<br>Size    | Classified G       | roup of Or         | rigin (%)                  |
|------------------------------|-------------------|--------------------|--------------------|----------------------------|
|                              |                   | <u>Kvichak</u>     | <u>Egegik</u>      | <u>Ugashik</u>             |
| Kvichak<br>Egegik<br>Ugashik | 197<br>200<br>199 | 90.4<br>1.5<br>8.5 | 0.5<br>88.5<br>7.0 | 9.1<br>10.0<br><u>84.4</u> |

Mean classification accuracy = 87.8% Variables used: 63,8,35,57,71,66,10,14 Box's Test of Variance-Covariance Equality F-statistic = 5.67D.F. = 72, 979,526 P = 0.00

Table 8. (p 3 of 4).

| Actual Group      | Sample     |                     |                    |
|-------------------|------------|---------------------|--------------------|
| Of Origin         | Size       | Classified Group    | of Origin (%)      |
|                   |            | <u>Kvichak</u>      | <u>Naknek</u>      |
| Kvichak<br>Naknek | 200<br>200 | <u>92.0</u><br>12.5 | 8.0<br><u>87.5</u> |

Mean classification accuracy = 89.8% Variables used: 65,32,71,55,44

Box's Test of Variance-Covariance Equality

F-statistic = 3.75D.F. = 15, 637,785 P = 0.00

| Actual Group<br>Of Origin | Sample<br>Size | Classified Group of | f Origin (%)       |
|---------------------------|----------------|---------------------|--------------------|
|                           |                | <u>Kvichak</u>      | Egegik             |
| Kvichak<br>Egegik         | 200<br>200     | 99.0<br>3.0         | 1.0<br><u>97.0</u> |

Mean classification accuracy = 98.0%

Variables used: 63,42,15,71

Box's Test of Variance-Covariance Equality F-statistic = 13.87

D.F. = 10, 757,309 P = 0.01

Table 8. (p 4 of 4).

| Actual Group<br>Of Origin | Sample<br>Size | Classified Group   | of Origin (%)      |
|---------------------------|----------------|--------------------|--------------------|
|                           |                | <u>Kvichak</u>     | <u>Ugashik</u>     |
| Kvichak<br>Ugashik        | 197<br>199     | <u>91.9</u><br>9.0 | 8.1<br><u>91.0</u> |

Mean classification accuracy = 91.4% Variables used: 63,8,57,71,10,29 Box's Test of Variance-Covariance Equality F-statistic = 2.44 D.F. = 21,570,834 P = 0.00

<sup>&</sup>lt;sup>a</sup> The equality of the variance -covariance matrices tested with a procedure described by Box (1949).

Table 9. Mean and standard error of age-1.3 scale variables used to construct linear discriminant functions for the East Side of Bristol Bay, 1990.

|                    |                      | Kvi    | chak  | Naknek |       | Egegik            |       | Ugashik               |       |
|--------------------|----------------------|--------|-------|--------|-------|-------------------|-------|-----------------------|-------|
| Variable<br>Number | Variable<br>Name     | Mean   | SE    | Mean*  | SE    | Mean <sup>a</sup> | SE    | <br>Mean <sup>a</sup> | SE    |
| First Fre          | shwater Annular Zone |        | -     |        |       |                   |       |                       |       |
| 11                 | C4-C8                | 42.98  | 0.697 | 44.39  | 0.478 | 48.03             | 0.486 | 43.20                 | 0.597 |
| 14                 | C2-E1FW              | 88.48  | 2.647 | 108.54 | 2.023 | 153.00            | 1.786 | 108.05                | 2.283 |
| 16                 | CO-C2/S1FW           | 0.37   | 0.009 | 0.32   | 0.005 | 0.25              | 0.003 | 0.34                  | 0.005 |
| 19                 | CO-C8/S1FW           | 0.87   | 0.015 | 0.77   | 0.008 | 0.63              | 0.006 | 0.77                  | 0.008 |
| 24                 | C4-C8/S1FW           | 0.31   | 0.005 | 0.28   | 0.003 | 0.24              | 0.003 | 0.27                  | 0.003 |
| <u>Freshwate</u>   | r and Plus Growth Zo | nes    |       | -      |       |                   |       |                       |       |
| 66                 | S1FW+S2FW+SPGZ       | 146.43 | 2.541 | 171.11 | 2.125 | 215.09            | 1.661 | 174.90                | 2.463 |
| <u>First Mar</u>   | ine Annular Zone     |        |       |        |       |                   |       |                       |       |
| 77                 | c3-c6                | 54.33  | 2.044 | 49.23  | 1.024 | 63.40             | 1.310 | 56.56                 | 1.254 |
| 96                 | C3-C9/S1OZ           | 0.28   | 0.009 | 0.26   | 0.004 | 0.32              | 0.005 | 0.29                  | 0.004 |

Scale images projected at 100x magnification and measured at 0.01 in; therefore, variable means are in 0.0001 in.

Table 10. Classification matrix from a discriminant analysis of age-1.3 sockeye salmon sampled from Kvichak, Naknek, Egegik, and Ugashik Rivers, 1990.

| Actual Group<br>Of Origin              | Sample<br>Size         | Class                                                      | ified Grou                 | up of Orio                       | gin (%)                     |
|----------------------------------------|------------------------|------------------------------------------------------------|----------------------------|----------------------------------|-----------------------------|
|                                        |                        | <u>Kvichak</u>                                             | <u>Naknek</u>              | <u>Egegik</u>                    | <u>Ugashik</u>              |
| Kvichak<br>Naknek<br>Egegik<br>Ugashik | 40<br>100<br>78<br>100 | $\begin{array}{c} 75.0 \\ 12.0 \\ 0.0 \\ 12.0 \end{array}$ | 7.5<br>61.0<br>9.0<br>25.0 | 0.0<br>7.0<br><u>85.9</u><br>8.0 | 17.5<br>20.0<br>5.1<br>55.0 |

Mean classification accuracy = 69.2%Variables used: 14,77,24,11,16,66,96,19Box's Test of Variance-Covariance Equality<sup>a</sup> F-statistic = 4.43D.F. = 108, 86,162P = 0.00

The equality of the variance -covariance matrices tested with a procedure described by Box (1949).

Table 11. Mean and standard error of age-2.3 scale variables used to construct linear discriminant functions for the East Side of Bristol Bay, 1990.

|                    |                         | Kvi                   | chak  | Nak    | Naknek |                   | Egegik |                       | Ugashik |  |
|--------------------|-------------------------|-----------------------|-------|--------|--------|-------------------|--------|-----------------------|---------|--|
| Variable<br>Number | Variable<br>Name        | <br>Mean <sup>a</sup> | SE    | Mean   | SE     | Mean <sup>a</sup> | SE     | <br>Mean <sup>a</sup> | SE      |  |
| First Fre          | shwater Annular Zone    |                       |       | ,·     |        |                   | -      |                       |         |  |
| 2                  | S1FW                    | 102.50                | 1.868 | 121.68 | 1.389  | 132.92            | 1.769  | 100.31                | 1.360   |  |
| 4                  | CO-C4                   | 72.06                 | 0.791 | 73.61  | 0.498  | 76.39             | 0.463  | 67.90                 | 0.531   |  |
| 12                 | C(NC-4)-E1FW            | 36.27                 | 0.506 | 34.78  | 0.332  | 34.29             | 0.301  | 31.06                 | 0.315   |  |
| 17                 | C0-C4/S1FW              | 0.72                  | 0.010 | 0.62   | 0.007  | 0.59              | 0.007  | 0.69                  | 0.007   |  |
| 25                 | (C(NC-4)-E1FW)/S1FW     | 0.37                  | 0.008 | 0.30   | 0.005  | 0.27              | 0.004  | 0.32                  | 0.005   |  |
| 27                 | S1FW/NC1FW              | 13.81                 | 0.132 | 13.31  | 0.086  | 13.35             | 0.075  | 12.39                 | 0.083   |  |
| Second Fr          | eshwater Annular Zone   |                       |       | -      |        |                   |        |                       |         |  |
| 31                 | NC2FW                   | 8.92                  | 0.110 | 11.17  | 0.106  | 11.22             | 0.102  | 10.34                 | 0.116   |  |
| 32                 | S2FW                    | 90.26                 | 1.204 | 118.61 | 1.282  | 119.04            | 1.082  | 108.26                | 1.335   |  |
| 38                 | C2-C6                   | 45.37                 | 0.433 | 48.17  | 0.364  | 47.55             | 0.322  | 47.47                 | 0.400   |  |
| 40                 | C4-C6                   | 21.49                 | 0.304 | 23.43  | 0.240  | 23.59             | 0.200  | 23.53                 | 0.248   |  |
| 43                 | C(NC-2)-E2FW            | 13.64                 | 0.260 | 14.73  | 0.177  | 14.33             | 0.166  | 13.90                 | 0.208   |  |
| 45                 | C4-E2FW                 | 43.92                 | 1.209 | 70.82  | 1.227  | 72.52             | 1.118  | 61.88                 | 1.312   |  |
| 48                 | (E1FW-C6)/S2FW          | 0.76                  | 0.009 | 0.61   | 0.006  | 0.60              | 0.006  | 0.66                  | 0.008   |  |
| Freshwate          | r and Plus Growth Zones |                       |       |        |        |                   |        |                       |         |  |
| 65                 | NC1FW+NC2FW+NCPG        | 16.78                 | 0.156 | 21.33  | 0.136  | 22.13             | 0.132  | 19.49                 | 0.129   |  |
| 67                 | S1FW/(S1FW+S2FW+SPGZ)   | 0.52                  | 0.006 | 0.49   | 0.004  | 0.51              | 0.005  | 0.46                  | 0.005   |  |
| <u>First Mar</u>   | ine Annular Zone        |                       |       |        |        |                   |        |                       |         |  |
| 72                 | EFW-C3                  | 51.33                 | 0.906 | 46.42  | 0.533  | 50.67             | 0.661  | 44.87                 | 0.592   |  |
| 88                 | C9-E10Z                 | 232.12                | 3.788 | 236.31 | 2.479  | 218.85            | 2.355  | 250.71                | 2.877   |  |

<sup>&</sup>lt;sup>a</sup> Scale images projected at 100x magnification and measured in 0.01 in; therefore, variable means are in 0.0001 in.

Table 12. Mean, variance, and t-statistic comparing males and females for selected scale variables of age-2.3 sockeye salmon sampled from Kvichak, Naknek, Egegik, and Ugashik Rivers 1990.

|                   | +                 | S1FW+S2FW |       |        |        |             |             |         |
|-------------------|-------------------|-----------|-------|--------|--------|-------------|-------------|---------|
| s20Z              | \$10Z             | SPGZ      | SPGZ  | S2FW   | S1FW   |             | Sex         | River   |
| 55                | 55                | 55        | 21    | 55     | 55     | Sample Size | Male        | Kvichak |
| 353.49            | 428.75            | 196.96    | 10.14 | 90.09  | 103.00 | Mean        |             |         |
| 3,057.92          | 1,322.60          | 543.33    | 7.63  | 195.86 | 376.07 | Variance    |             |         |
| 52                | 52                | 52        | 19    | 52     | 52     | Sample Size | Female      |         |
| 326.56            | 420.58            | 195.88    | 9.42  | 90.38  | 102.06 | Mean        |             |         |
| 2,147.08          | 1,480.72          | 401.44    | 2.59  | 120.63 | 391.70 | Variance    |             |         |
| 108ª              | 108°              | 108ª      | 40    | 108ª   | 108°   | Sample Size | Combined    |         |
| 340.19            | 424.57            | 196.39    | 9.80  | 90.26  | 102.50 | Mean        |             |         |
| 2,752.48          | 1,394.30          | 466.11    | 5.29  | 156.44 | 376.91 | Variance    |             |         |
| 2.72              | 1.13              | 0.26      | 1.00  | -0.12  | 0.25   |             | T-Statistic |         |
| 67                | 67                | 67        | 55    | 67     | 67     | Sample Size | Male        | Naknek  |
| 332.36            | 432.79            | 251.12    | 11.47 | 120.48 | 121.22 | Mean        |             |         |
| 1,791.48          | 1,106.96          | 541.29    | 12.99 | 386.13 | 394.60 | Variance    |             |         |
| 133               | 133               | 133       | 109   | 133    | 133    | Sample Size | Female      |         |
| 321.97            | 417.05            | 248.90    | 11.38 | 117.67 | 121.91 | Mean        |             |         |
| 1,388.80          | 1,229.07          | 617.42    | 12.35 | 300.04 | 384.04 | Variance    |             |         |
| 200               | 200               | 200       | 164   | 200    | 200    | Sample Size | Combined    |         |
| 325.45            | 422.33            | 249.65    | 11.41 | 118.61 | 121.68 | Mean        |             |         |
| 1,539.54          | 1,237.85          | 590.17    | 12.49 | 328.85 | 385.72 | Variance    |             |         |
| 1.78              | 3.05 <sup>b</sup> | 0.61      | 0.16  | 1.03   | -0.23  |             | T-Statistic |         |
| 101               | 101               | 101       | 73    | 101    | 101    | Sample Size | Male        | Egegik  |
| 329.88            | 415.39            | 259.84    | 11.99 | 117.97 | 133.21 | Mean        |             | -5-5    |
| 1,562.41          | 1,309.38          | 483.25    | 17.85 | 273.33 | 690.37 | Variance    |             |         |
| 99                | 99                | 99        | 74    | 99     | 99     | Sample Size | Female      |         |
| 316.79            | 405.22            | 261.27    | 11.41 | 120.12 | 132.63 | Mean        |             |         |
| 1,712.01          | 959.13            | 676.81    | 20.82 | 193.76 | 566.69 | Variance    |             |         |
| 200               | 200               | 200       | 147   | 200    | 200    | Sample Size | Combined    |         |
| 323.40            | 410.36            | 260.55    | 11.69 | 119.04 | 132.92 | Mean        |             |         |
| 1,671.30          | 1,156.27          | 576.66    | 19.30 | 233.93 | 626.07 | Variance    |             |         |
| 2.29 <sup>t</sup> | 2.13 <sup>b</sup> | -0.42     | 0.80  | -0.99  | 0.16   |             | T-Statistic |         |

Table 12. (p 2 of 2).

|              |             |             |        | S1FW+S2FW+ |       |        |                   |          |  |  |
|--------------|-------------|-------------|--------|------------|-------|--------|-------------------|----------|--|--|
| River        | Sex         |             | S1FW   | S2FW       | SPGZ  | SPGZ   | S10Z              | S20Z     |  |  |
| Ugashik Male | Male        | Sample Size | 68     | 68         | 49    | 68     | 68                | 68       |  |  |
|              |             | Mean        | 98.12  | 109.01     | 12.92 | 216.44 | 450.68            | 347.18   |  |  |
|              |             | Variance    | 320.73 | 366.01     | 29.20 | 494.34 | 1,452.13          | 1,778.12 |  |  |
|              | Female      | Sample Size | 95     | 95         | 81    | 95     | 95                | 95       |  |  |
|              |             | Mean        | 101.88 | 107.72     | 12.48 | 220.24 | 421.86            | 346.37   |  |  |
|              |             | Variance    | 285.21 | 239.38     | 25.80 | 401.29 | 1,126.40          | 1,655.38 |  |  |
|              | Combined    | Sample Size | 163    | 163        | 130   | 163    | 163               | 163      |  |  |
|              |             | Mean        | 100.31 | 108.26     | 12.65 | 218.66 | 433.88            | 346.71   |  |  |
|              |             | Variance    | 301.61 | 290.69     | 26.91 | 440.83 | 1,457.26          | 1,696.09 |  |  |
|              | T-Statistic |             | -1.37  | 0.48       | 0.46  | -1.14  | 5.11 <sup>b</sup> | 0.12     |  |  |

<sup>&</sup>lt;sup>a</sup> Included one sample for which sex was not determined.

<sup>&</sup>lt;sup>b</sup> Significant at  $\alpha = 0.05$ 

Table 13. Classification matrices from discriminant analyses of age-2.3 sockeye salmon sampled from Kvichak, Naknek, Egegik, and Ugashik Rivers, 1990.

| Actual Group<br>Of Origin              | Sample<br>Size           | Class <sup>-</sup>        | ified Grou                  | up of Orio                 | gin (%)                    |
|----------------------------------------|--------------------------|---------------------------|-----------------------------|----------------------------|----------------------------|
|                                        |                          | <u>Kvichak</u>            | <u>Naknek</u>               | <u>Egegik</u>              | <u>Ugashik</u>             |
| Kvichak<br>Naknek<br>Egegik<br>Ugashik | 108<br>200<br>200<br>163 | 80.6<br>3.0<br>1.5<br>6.1 | 6.5<br>56.5<br>24.0<br>13.5 | 3.7<br>26.5<br>67.0<br>3.7 | 9.3<br>14.0<br>7.5<br>76.7 |

Mean classification accuracy = 70.2% Variables used: 27,67,72,31,88,48,4,17,45,40,43,2,38

Box's Test of Variance-Covariance Equality

F-statistic = 5.04 D.F. = 273, 614,848

P = 0.01

| Actual Group<br>Of Origin           | Sample<br>Size    | Classif            | ied Group of Orig          | in (%)                     |
|-------------------------------------|-------------------|--------------------|----------------------------|----------------------------|
|                                     |                   | <u>Kvichak</u>     | Naknek/Egegik <sup>b</sup> | <u>Ugashik</u>             |
| Kvichak<br>Naknek/Egegik<br>Ugashik | 108<br>400<br>163 | 84.3<br>3.2<br>4.9 | 6.5<br><u>83.5</u><br>12.9 | 9.3<br>13.2<br><u>82.2</u> |

Mean classification accuracy = 83.3%

Variables used: 65,27,67,72,25,12,32,88,2,48

Box's Test of Variance-Covariance Equality

F-statistic = 6.68

D.F. = 110, 326,312

P = 0.00

Table 13. (p 2 of 2).

| Actual Group<br>Of Origin | Sample<br>Size | Classified Group of Origin |                    |  |  |  |  |
|---------------------------|----------------|----------------------------|--------------------|--|--|--|--|
|                           | 10000          | <u>Kvichak</u>             | Naknek/Egegik      |  |  |  |  |
| Kvichak<br>Naknek/Egegik  | 108<br>400     | $\frac{93.5}{7.0}$         | 6.5<br><u>93.0</u> |  |  |  |  |

Mean classification accuracy = 93.3%Variables used: 65,67,43Box's Test of Variance-Covariance Equality F-statistic = 2.59D.F. = 6, 228,120P = 0.01

<sup>&</sup>lt;sup>a</sup> The equality of the variance -covariance matrices tested with a procedure described by Box (1949).

b Samples from Naknek and Egegik Rivers were pooled.

Table 14. Run composition estimates and 90% confidence intervals (C.I.) calculated from scale pattern analyses of age-2.2 sockeye salmon by fishery and date for the East Side of Bristol Bay, 1990.

|         |           | Kv       | ichak                 | Nal      | knek        | Eş       | gegik       | Ug       | ashik        |
|---------|-----------|----------|-----------------------|----------|-------------|----------|-------------|----------|--------------|
| Fishery | Date      | Pt. Est. | <sup>a</sup> 90% C.I. | Pt. Est. | 90% C.I.    | Pt. Est. | 90% C.I.    | Pt. Est. | 90% C.I.     |
| Naknek/ | 6/11-6/22 | 86.5     | (78.0,94.9)           | 0.0      | Trace⁵      | 13.5     | (5.1,22.0)  | 0.0      | Тгасе        |
| Kvichak | 6/28-6/29 | 78.6     | (69.1,88.2)           | 21.4     | (11.8,30.9) | 0.0      | Trace       | 0.0      | Trace        |
|         | 6/30      | 74.8     | (65.0,84.7)           | 25.2     | (15.3,35.0) | 0.0      | Trace       | 0.0      | Trace        |
|         | 7/01-7/03 | 86.4     | (78.2,94.5)           | 12.7     | (2.5, 23.0) | 0.9      | (0.0, 5.1)  | 0.0      | Trace        |
|         | 7/04-7/05 | 78.9     | (66.9,91.0)           | 12.2     | (0.0, 26.5) | 2.4      | (0.0, 8.3)  | 6.5      | (0.0, 16.3)  |
|         | 7/06-7/09 | 88.1     | (78.9, 97.2)          | 10.0     | (0.0, 21.5) | 1.9      | (0.0, 6.8)  | 0.0      | Trace        |
|         | 7/10-7/11 | 81.0     | (64.9, 97.1)          | 16.1     | (0.0, 36.2) | 2.2      | (0.0, 10.7) | 0.7      | (0.0, 12.2)  |
|         | 7/12-7/14 | 78.6     | (69.1,88.2)           | 21.4     | (11.8,30.9) | 0.0      | Trace       | 0.0      | Trace        |
|         | 7/15-9/01 |          | (62.3,94.4)           | 12.6     | (0.0,31.6)  | 2.4      | (0.0,10.6)  | 6.7      | (0.0, 19.8)  |
| Egegik  | 6/07-6/21 | 55.7     | (42.6,68.7)           | 8.9      | (0.0,23.8)  | 35.4     | (21.6,49.3) | 0.0      | Trace        |
| -3-3    | 6/22-6/30 |          | (42.6,68.3)           | 1.4      | (0.0,15.1)  |          | (28.9,57.3) | 0.0      | Trace        |
|         | 7/01-7/02 |          | (34.1,51.3)           | 0.0      | Trace       |          | (48.7,65.9) | 0.0      | Trace        |
|         | 7/03-7/04 |          | (19.0,48.7)           | 0.8      | (0.0,21.0)  |          | (43.5,85.3) | 0.9      | (0.0, 12.9)  |
|         | 7/05-7/06 |          | (31.1,48.1)           | 0.0      | Trace       |          | (51.9,68.9) | 0.0      | Trace        |
|         | 7/07-7/08 |          | (32.7,59.3)           | 3.1      | (0.0, 18.2) |          | (35.1,66.6) | 0.0      | Trace        |
|         | 7/10      |          | (25.9,50.0)           | 0.0      | Trace       |          | (47.1,73.1) | 2.0      | (0.0, 12.0)  |
|         | 7/12-7/13 |          | (23.6,47.6)           | 0.0      | Trace       |          | (38.9,64.9) | 12.5     | (0.6, 24.4)  |
|         | 7/14-7/15 |          | (19.0,47.9)           | 11.3     | (0.0, 32.1) |          | (28.3,66.5) | 7.8      | (0.0, 21.4)  |
|         | 7/16-9/06 | 18.8     | (6.8,30.9)            | 0.9      | (0.0,20.7)  | 62.8     | (42.6,83.1) | 17.5     | (1.5, 33.4)  |
| Ugashik | 6/05-6/22 | 30.7     | (10.5,50.9)           | 10.0     | (0.0,38.5)  | 46.2     | (19.6,72.8) | 13.1     | (0.0, 34.0)  |
| •       | 6/26-7/04 | 13.6     | (0.0,27.4)            | 0.0      | Trace       |          | (0.0,15.0)  | 82.0     | (64.5, 99.7) |
|         | 7/06-7/09 | 6.6      | (0.0,16.3)            | 0.0      | Тгасе       | 12.8     | (2.2,23.4)  | 80.6     | (66.3, 95.2) |
|         | 7/10-7/12 | 6.1      | (0.0,16.0)            | 0.0      | Trace       | 6.6      | (0.0, 16.1) | 87.3     | (73.4,100.0) |
|         | 7/13-7/15 | 8.3      | (0.0, 18.5)           | 0.0      | Trace       | 12.3     | (1.7, 22.9) | 79.4     | (64.8, 94.2) |
|         | 7/16-9/07 | 8.4      | (0.0, 19.4)           | 0.0      | Trace       | 0.0      | Trace       | 91.6     | (80.6,100.0) |

<sup>&</sup>lt;sup>a</sup> Expressed in percent.

Trace was recorded for systems that were originally included in the model used to classify the catch, their point estimates were zero, but the upper bounds of the 90% confidence interval was greater than zero.

Table 15. Estimated numbers of age-2.2 sockeye salmon by river of origin harvested in the East Side of Bristol Bay, 1990.

| District           | River                                           | Estimated<br>Percent                | Estimated<br>Numbers                                         | Standard Error<br>of Estimate           | Coefficient of Variation     |
|--------------------|-------------------------------------------------|-------------------------------------|--------------------------------------------------------------|-----------------------------------------|------------------------------|
| Naknek/<br>Kvichak | Kvichak<br>Naknek<br>Egegik<br>Ugashik<br>Total | 82.4<br>14.2<br>1.6<br>1.8<br>100.0 | 6,344,297<br>1,096,598<br>120,726<br>141,199<br>7,702,820    | 167,074<br>172,643<br>68,339<br>74,471  | 2.6<br>15.7<br>56.6<br>52.7  |
| Egegik             | Kvichak<br>Naknek<br>Egegik<br>Ugashik<br>Total | 37.6<br>1.6<br>56.6<br>4.2<br>100.0 | 1,220,449<br>52,847<br>1,839,160<br>136,284<br>3,248,740     | 67,589<br>55,719<br>84,241<br>40,416    | 5.5<br>105.4<br>4.6<br>29.7  |
| Ugashik            | Kvichak<br>Naknek<br>Egegik<br>Ugashik<br>Total | 8.1<br>0.2<br>7.7<br>84.0<br>100.0  | 54,675<br>1,109<br>52,185<br>565,496<br>673,465              | 18,181<br>1,266<br>12,443<br>31,411     | 33.3<br>114.2<br>23.8<br>5.6 |
| Total<br>East Side | Kvichak<br>Naknek<br>Egegik<br>Ugashik<br>Total | 65.5<br>9.9<br>17.3<br>7.3<br>100.0 | 7,619,421<br>1,150,554<br>2,012,071<br>842,979<br>11,625,025 | 181,142<br>181,416<br>109,186<br>90,366 | 2.4<br>15.8<br>5.4<br>10.7   |

Table 16. Run composition estimates and 90% confidence intervals (C.I.) calculated from scale pattern analyses of age-2.3 sockeye salmon by fishery and date for the East Side of Bristol Bay, 1990.

|                    |                                                                                                              | K                            | vichak                                                                                                                | U                                             | gashik                                                                                   | 0                                                    | ther <sup>a</sup>                                                                                                                            |
|--------------------|--------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Fishery            | Date                                                                                                         | Pt. Est                      | . <sup>b</sup> 90% C.I.                                                                                               | Pt. Est                                       | . <sup>b</sup> 90% C.I.                                                                  | Pt. Est.                                             | <sup>b</sup> 90% C.I.                                                                                                                        |
| Naknek/<br>Kvichak | 6/11-6/29<br>6/30<br>7/01-7/03<br>7/04-7/05<br>7/06-7/09<br>7/10-8/17                                        | 56.9<br>58.4<br>51.0<br>47.7 | (64.0,94.3)<br>(44.8,69.1)<br>(46.2,70.6)<br>(38.5,63.5)<br>(33.8,61.7)<br>(30.6,54.6)                                | 1.6<br>0.0<br>6.4<br>9.0<br>5.3<br>6.3        | (0.0,13.7)<br>Trace <sup>c</sup><br>(0.0,16.7)<br>(0.0,20.1)<br>(0.0,17.1)<br>(0.0,17.0) | 43.1<br>35.2<br>40.0<br>47.0                         | (05.7, 32.6)<br>(30.9, 55.2)<br>(23.3, 47.1)<br>(27.2, 52.8)<br>(32.2, 61.8)<br>(37.9, 64.2)                                                 |
| Egegik             | 6/07-6/30<br>7/01-7/02<br>7/03-7/04<br>7/05-7/06<br>7/07-7/08<br>7/10<br>7/12-7/13<br>7/14-7/15<br>7/16-9/06 | 8.1<br>5.8<br>8.8            | (8.1,24.2)<br>(3.1,17.7)<br>(4.1,19.0)<br>(0.0,11.0)<br>(1.1,15.1)<br>(1.1,15.1)<br>(0.0,12.4)<br>(1.3,16.3)<br>Trace | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | Trace                              | 89.6<br>88.4<br>95.4<br>91.9<br>91.9<br>94.2<br>91.2 | (75.8, 91.9)<br>(82.3, 96.9)<br>(81.0, 95.9)<br>(89.0,100.0)<br>(84.9, 98.9)<br>(84.9, 98.9)<br>(87.6,100.0)<br>(83.7, 98.7)<br>(97.5,100.0) |
| Ugashik            | 6/05-7/04<br>7/06-7/09<br>7/10-7/12<br>7/13-9/07                                                             | 7.6<br>15.4                  | (0.0,11.0)<br>(0.0,16.2)<br>(4.5,26.4)<br>(0.0,14.3)                                                                  | 50.7<br>55.8                                  | (27.3,59.4)<br>(34.4,67.2)<br>(38.8,72.8)<br>(26.1,58.0)                                 | 41.7<br>28.8                                         | (37.1, 68.6)<br>(26.0, 57.4)<br>(13.3, 44.3)<br>(36.0, 67.4)                                                                                 |

<sup>&</sup>lt;sup>a</sup> Represents samples from Naknek and Egegik Rivers.

b Expressed in percent.

Trace was recorded for systems that were originally included in the model used to classify the catch, their point estimates were zero, but the upper bounds of the 90% confidence interval was greater than zero.

Table 17. Estimated numbers of age-2.3 sockeye salmon by river of origin harvested in the East Side of Bristol Bay, 1990.

| District           | River                                             | Estimated<br>Percent         | Estimated<br>Numbers                           | Standard Error<br>of Estimate | Coefficient<br>of Variation |
|--------------------|---------------------------------------------------|------------------------------|------------------------------------------------|-------------------------------|-----------------------------|
| Naknek/<br>Kvichak | Kvichak<br>Ugashik<br>Other <sup>a</sup><br>Total | 51.3<br>6.0<br>42.7<br>100.0 | 1,793,231<br>209,052<br>1,489,075<br>3,491,358 | 92,924<br>70,568<br>93,698    | 5.2<br>33.8<br>6.3          |
| Egegik             | Kvichak<br>Ugashik<br>Other<br>Total              | 7.3<br>0.0<br>92.7<br>100.0  | 307,466<br>0<br>3,885,294<br>4,192,760         | 62,852<br>0<br>94,500         | 20.4                        |
| Ugashik            | Kvichak<br>Ugashik<br>Other<br>Total              | 8.3<br>48.2<br>43.5<br>100.0 | 49,172<br>284,451<br>257,067<br>590,690        | 11,951<br>24,371<br>23,448    | 24.3<br>8.6<br>9.1          |
| Total<br>East Side | Kvichak<br>Ugashik<br>Other<br>Total              | 26.0<br>6.0<br>68.0<br>100.0 | 2,149,869<br>493,503<br>5,631,436<br>8,274,808 | 112,819<br>74,658<br>135,127  | 5.2<br>15.1<br>2.4          |

<sup>&</sup>lt;sup>a</sup> Represents samples from Egegik and Naknek Rivers.

39

Table 18. Run composition estimates of sockeye salmon catch by age group and date, Naknek-Kvichak District, 1990.

|                   |         | C     | .2     | C     | 3.3    | 1     | .2      | 1     | 1.3     |       | 2.2       |       | 2.3     | 01    | ther*  |       | Total     |
|-------------------|---------|-------|--------|-------|--------|-------|---------|-------|---------|-------|-----------|-------|---------|-------|--------|-------|-----------|
| Date              | System  | %     | Number | %     | Number | %     | Number  | %     | Number  | %     | Number    | %     | Number  | %     | Number | %     | Number    |
| 6/11 <sup>b</sup> | Kvichak | 84.8  | 469    | 75.4  | 835    | 23.0  | 1,144   | 66.9  | 59,587  | 86.5  | 49,302    | 79.2  | 25,857  | 0.0   | 0      | 74.0  | 137,193   |
| thru              | Naknek  | 0.0   | 0      | 0.0   | 0      | 0.0   | . 0     | 0.0   | . 0     | 0.0   | 0         | 0.0   | . 0     | 0.0   | 0      | 0.0   | . 0       |
| 6/22              | Egegik  | 11.9  | 66     | 2.7   | 30     | 74.3  | 3,702   | 27.0  | 24,062  | 13.5  | 7,694     | 19.2  | 6,268   | 0.0   | 0      | 22.6  | 41,822    |
|                   | Ugashik | 3.3   | 18     | 21.9  | 242    | 2.7   | 134     | 6.1   | 5,442   | 0.0   | 0         | 1.6   | 522     | 0.0   | 0      | 3.4   | 6,359     |
|                   | Total   | 100.0 | 553    | 100.0 | 1,107  | 100.0 | 4,980   | 100.0 | 89,090  | 100.0 | 56,996    | 100.0 | 32,648  | 0.0   | 0      | 100.0 | 185,374   |
| 6/28              | Kvichak | 0.0   | 0      | 0.0   | 0      | 11.3  | 8,463   | 15.3  | 25,047  | 78.6  | 326,868   | 79.2  | 127,144 | 0.0   | 0      | 59.9  | 487,522   |
| thru              | Naknek  | 0.0   | 0      | 0.0   | 0      | 87.6  | 65,643  | 83.6  | 136,684 | 21.4  | 88,995    | 19.2  | 30,823  | 0.0   | 0      | 39.5  | 322,145   |
| 6/29              | Egegik  | 0.0   | 0      | 0.0   | 0      | 0.0   | 0       | 0.0   | 0       | 0.0   | 0         | 0.0   | 0       | 0.0   | 0      | 0.0   | 0         |
|                   | Ugashik | 0.0   | 0      | 0.0   | 0      | 1.1   | 810     | 1.1   | 1,862   | 0.0   | 0         | 1.6   | 2,569   | 0.0   | 0      | 0.6   | 5,240     |
|                   | Total   | 0.0   | 0      | 0.0   | 0      | 100.0 | 74,916  | 100.0 | 163,593 | 100.0 | 415,863   | 100.0 | 160,535 | 0.0   | 0      | 100.0 | 814,907   |
| 6/30              | Kvichak | 0.0   | 0      | 60.1  | 1,100  | 6.9   | 5,806   | 9.5   | 26,149  | 74.8  | 291,592   | 56.9  | 119,757 | 0.0   | 0      | 46.3  | 444,405   |
|                   | Naknek  | 0.0   | 0      | 39.9  | 730    | 93.1  | 78,382  | 90.5  | 248,378 | 25.2  | 98,237    | 43.1  | 90,713  | 0.0   | 0      | 53.7  | 516,439   |
|                   | Egegik  | 0.0   | 0      | 0.0   | 0      | 0.0   | 0       | 0.0   | 0       | 0.0   | 0         | 0.0   | 0       | 0.0   | 0      | 0.0   | 0         |
|                   | Ugashik | 0.0   | 0      | 0.0   | 0      | 0.0   | 0       | 0.0   | 0       | 0.0   | 0         | 0.0   | 0       | 0.0   | 0      | 0.0   | 0         |
|                   | Total   | 0.0   | 0      | 100.0 | 1,830  | 100.0 | 84,188  | 100.0 | 274,527 | 100.0 | 389,829   | 100.0 | 210,470 | 0.0   | 0      | 100.0 | 960,844   |
| 7/01              | Kvichak | 77.1  | 1,432  | 41.0  | 2,283  | 11.2  | 19,960  | 15.6  | 96,066  | 86.4  | 1,281,342 | 58.4  | 398,315 | 0.0   | 0      | 60.4  | 1,799,398 |
| thru              | Naknek  | 10.7  | 198    | 14.4  | 803    | 80.1  | 142,959 | 78.5  | 484,100 | 12.7  | 188,345   | 32.4  | 220,983 | 74.7  | 5,551  | 35.1  | 1,042,939 |
| 7/03              | Egegik  | 1.1   | 21     | 0.2   | 9      | 3.8   | 6,717   | 0.7   | 4,033   | 0.9   | 13,347    | 2.8   | 19,097  | 25.3  | 1,882  | 1.5   | 45,107    |
|                   | Ugashik | 11.2  | 208    | 44.5  | 2,480  | 4.9   | 8,774   | 5.3   | 32,803  | 0.0   | 0         | 6.4   | 43,651  | 0.0   | 0      | 3.0   | 87,916    |
|                   | Total   | 100.0 | 1,858  | 100.0 | 5,575  | 100.0 | 178,410 | 100.0 | 617,002 | 100.0 | 1,483,035 | 100.0 | 682,047 | 100.0 | 7,433  | 100.0 | 2,975,360 |
| 7/04              | Kvichak | 55.6  | 1,627  | 17.0  | 498    | 8.3   | 15,050  | 12.1  | 93,611  | 78.9  | 995,588   | 51.0  | 347,897 | 0.0   | 0      | 49.7  | 1,454,270 |
| thru              | Naknek  | 8.8   | 257    | 6.8   | 200    | 67.8  | 122,998 | 69.4  | 538,284 | 12.2  | 153,944   | 32.2  | 219,653 | 56.4  | 11,567 | 35.8  | 1,046,903 |
| 7/05              | Egegik  | 2.6   | 76     | 0.2   | 6      | 9.0   | 16,295  | 1.6   | 12,645  | 2.4   | 30,284    | 7.8   | 53,208  | 43.6  | 8,926  | 4.1   | 121,440   |
|                   | Ugashik | 33.1  | 969    | 75.9  | 2,224  | 15.0  | 27,174  | 16.9  | 131,298 | 6.5   | 82,019    | 9.0   | 61,394  | 0.0   | 0      | 10.4  | 305,077   |
|                   | Total   | 100.0 | 2,928  | 100.0 | 2,928  | 100.0 | 181,517 | 100.0 | 775,838 | 100.0 | 1,261,835 | 100.0 | 682,151 | 100.0 | 20,493 | 100.0 | 2,927,690 |

Table 18. (p 2 of 2).

|       |         |       | .2     |       | 0.3    | ī     | 1.2       |       | 1.3       |       | 2.2       |       | 2.3       | 01    | :herª  |       | Total      |
|-------|---------|-------|--------|-------|--------|-------|-----------|-------|-----------|-------|-----------|-------|-----------|-------|--------|-------|------------|
| Date  | System  | %     | Number | %     | Number | %     | Number    | %     | Number    | %     | Number    | %     | Number    | %     | Number | %     | Number     |
| 7/06  | Kvichak | 0.0   | 0      | 44.2  | 3,799  | 10.5  | 40,877    | 15.4  | 134,778   | 88.1  | 1,522,979 | 47.7  | 365,599   | 0.0   | 0      | 54.8  | 2,068,030  |
| thru  | Naknek  | 0.0   | 0      | 15.7  | 1,350  | 75.9  | 295,729   | 78.4  | 686,037   | 10.0  | 172,869   | 38.1  | 292,019   | 55.1  | 2,512  | 38.4  | 1,450,516  |
| 7/09  | Egegik  | 0.0   | 0      | 0.5   | 39     | 9.8   | 38,109    | 1.8   | 15,676    | 1.9   | 32,845    | 8.9   | 68,214    | 44.9  | 2,050  | 4.2   | 156,935    |
|       | Ugashik | 0.0   | 0      | 39.7  | 3,415  | 3.8   | 14,872    | 4.4   | 38,091    | 0.0   | 0         | 5.3   | 40,622    | 0.0   | 0      | 2.6   | 97,000     |
|       | Total   | 0.0   | 0      | 100.0 | 8,603  | 100.0 | 389,587   | 100.0 | 874,582   | 100.0 | 1,728,693 | 100.0 | 766,454   | 100.0 | 4,562  | 100.0 | 3,772,481  |
| 7/10  | Kvichak | 0.0   | 0      | 0.0   | 0      | 7.9   | 18,169    | 11.5  | 37,716    | 81.0  | 638,113   | 42.7  | 138,410   | 0.0   | 0      | 49.7  | 832,407    |
| thru  | Naknek  | 0.0   | 0      | 0.0   | 0      | 80.4  | 184,629   | 82.1  | 269,653   | 16.1  | 126,835   | 43.7  | 141,651   | 66.0  | 2,706  | 43.3  | 725,475    |
| 7/11  | Egegik  | 0.0   | 0      | 0.0   | 0      | 7.3   | 16,711    | 1.3   | 4,328     | 2.2   | 17,331    | 7.3   | 23,663    | 28.7  | 1,178  | 3.8   | 63,211     |
|       | Ugashik | 0.0   | 0      | 0.0   | 0      | 4.5   | 10,265    | 5.0   | 16,552    | 0.7   | 5,515     | 6.3   | 20,421    | 5.3   | 219    | 3.2   | 52,971     |
|       | Total   | 0.0   | 0      | 0.0   | 0      | 100.0 | 229,774   | 100.0 | 328,248   | 100.0 | 787,794   | 100.0 | 324,145   | 100.0 | 4,103  | 100.0 | 1,674,064  |
| 7/12  | Kvichak | 69.4  | 1,143  | 33.4  | 664    | 6.5   | 20,957    | 9.0   | 35,568    | 78.6  | 611,357   | 42.7  | 165,656   | 0.0   | 0      | 44.3  | 835,344    |
| thru  | Naknek  | 18.5  | 304    | 22.6  | 449    | 90.0  | 288,777   | 87.3  | 344,833   | 21.4  | 166,451   | 51.0  | 197,856   | 0.0   | 0      | 52.9  | 998,670    |
| 7/14  | Egegik  | 0.0   | 0      | 0.0   | 0      | 0.0   | 0         | 0.0   | 0         | 0.0   | 0         | 0.0   | 0         | 100.0 | 1,986  | 0.1   | 1,986      |
|       | Ugashik | 12.2  | 201    | 43.9  | 873    | 3.5   | 11,150    | 3.7   | 14,700    | 0.0   | 0         | 6.3   | 24,441    | 0.0   | 0      | 2.7   | 51,365     |
|       | Total   | 100.0 | 1,648  | 100.0 | 1,986  | 100.0 | 320,884   | 100.0 | 395,101   | 100.0 | 777,808   | 100.0 | 387,952   | 100.0 | 1,986  | 100.0 | 1,887,365  |
| 7/15° | Kvichak | 57.9  | 6,751  | 0.0   | 0      | 8.5   | 44,374    | 12.4  | 43,280    | 78.3  | 627,157   | 42.7  | 104,596   | 0.0   | 0      | 42.8  | 826,160    |
| thru  | Naknek  | 9.1   | 1,059  | 0.0   | 0      | 69.2  | 360,611   | 70.7  | 247,463   | 12.6  | 100,922   | 41.4  | 101,412   | 0.0   | 0      | 42.1  | 811,465    |
| 8/17  | Egegik  | 2.6   | 297    | 0.0   | 0      | 8.7   | 45,155    | 1.6   | 5,495     | 2.4   | 19,223    | 9.6   | 23,516    | 0.0   | 0      | 4.9   | 93,686     |
|       | Ugashik | 30.5  | 3,557  | 0.0   | 0      | 13.6  | 70,876    | 15.3  | 53,699    | 6.7   | 53,665    | 6.3   | 15,432    | 0.0   | 0      | 10.2  | 197,229    |
|       | Total   | 100.0 | 11,664 | 0.0   | 0      | 100.0 | 521,016   | 100.0 | 349,937   | 100.0 | 800,967   | 100.0 | 244,956   | 0.0   | 0      | 100.0 | 1,928,540  |
| Total | Kvichak | 61.3  | 11,422 | 41.7  | 9,179  | 8.8   | 174,799   | 14.3  | 551,801   | 82.4  | 6,344,297 | 51.3  | 1,793,231 | 0.0   | 0      | 51.8  | 8,884,729  |
|       | Naknek  | 9.7   | 1,817  | 16.0  | 3,532  | 77.5  | 1,539,728 | 76.4  | 2,955,432 | 14.2  | 1,096,598 | 37.1  | 1,295,109 | 57.9  | 22,336 | 40.4  | 6,914,552  |
|       | Egegik  | 2.5   | 460    | 0.4   | . 84   | 6.4   | 126,690   | 1.7   | 66,239    | 1.6   | 120,726   | 5.6   | 193,966   | 41.5  | 16,022 | 3.1   | 524,187    |
|       | Ugashik | 26.5  | 4,952  | 41.9  | 9,234  | 7.3   | 144,055   | 7.6   | 294,446   | 1.8   | 141,199   | 6.0   | 209,052   | 0.6   | 219    | 4.7   | 803,157    |
|       | Total   | 100.0 | 18,651 | 100.0 | 22,029 | 100.0 | 1,985,272 | 100.0 | 3,867,918 | 100.0 | 7,702,820 | 100.0 | 3,491,358 | 100.0 | 38,577 | 100.0 | 17,126,625 |

<sup>&</sup>lt;sup>a</sup> Other includes ages 2.1, 1.4, 3.2, and 3.3.

Scale samples were collected from 20 June through 21 June. Stock composition estimates calculated from those dates were applied to 11 June through 22 June catches.

<sup>&</sup>lt;sup>c</sup> Scale samples were collected on 15 July. Stock composition estimates calculated from that date were applied to 15 July through 17 August catches.

Table 19. Run composition estimates of sockeye salmon setnet catch from selected beaches, Naknek Section, Naknek-Kvichak District, 1990.

|                                     |                              | Percen                       | t Classifi                   | cation by                | Stock                     |                                  |
|-------------------------------------|------------------------------|------------------------------|------------------------------|--------------------------|---------------------------|----------------------------------|
| Beach                               | Date                         | Kvichak                      | Naknek                       | Egegik                   | Ugashik                   | Total                            |
| Libbyville<br>to<br>Pederson Pt.    | 7/07<br>7/08<br>7/09<br>7/10 | 25.0<br>15.8<br>41.2<br>14.9 | 75.0<br>84.2<br>58.8<br>63.6 | 0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.0<br>21.5 | 100.0<br>100.0<br>100.0<br>100.0 |
| Pederson Pt.<br>to<br>Inside Marker | 7/07<br>7/08<br>7/09<br>7/10 | 12.8<br>10.4<br>19.1<br>9.4  | 87.2<br>89.6<br>75.7<br>85.1 | 0.0<br>0.0<br>5.2<br>5.5 | 0.0<br>0.0<br>0.0<br>0.0  | 100.0<br>100.0<br>100.0<br>100.0 |
| South Naknek<br>Beach               | 7/12<br>7/13                 | 51.1<br>48.9                 | 34.3<br>37.5                 | 6.5<br>9.6               | 8.1<br>4.0                | 100.0<br>100.0                   |

Table 20. Run composition estimates of sockeye salmon catch by age group and date, Egegik District, 1990.

|       |         |       | 1.2     |       | 1.3     |       | 2.2     |       | 2.3     |       | 3.2    | 2     | - 4    | 3     | .3     | 0     | ther   |       | Total             |
|-------|---------|-------|---------|-------|---------|-------|---------|-------|---------|-------|--------|-------|--------|-------|--------|-------|--------|-------|-------------------|
| Date  | System  | %     | Number  | %     | Number  | %     | Number  | %     | Number  | %     | Number | %     | Number | %     | Number | %     | Number | %     | Number            |
| 6/07° | Kvichak | 3.4   | 377     | 10.9  | 1,674   | 55.7  | 18,219  | 16.2  | 3,271   | 0.0   | 0      | 0.0   | 0      | 0.0   | 0      | 46.8  | 391    | 29.8  | 23,932            |
| thru  | Naknek  | 26.7  | 2,986   | 60.8  | 9,342   | 8.9   | 2,911   | 14.3  | 2,888   | 0.0   | 0      | 0.0   | 0      | 0.0   | 0      | 17.4  | 145    | 22.8  | 18,271            |
| 6/21  | Egegik  | 69.9  | 7,819   | 28.3  | 4,337   |       | 11,579  | 69.5  | 14,034  | 0.0   | 0      |       | 0      | 0.0   | 0      | 35.8  | 299    | 47.4  | 38,068            |
|       | Ugashik | 0.0   | 0       | 0.0   | 0       | 0.0   | 0       |       | 0       | 0.0   | 0      |       | 0      | 0.0   | 0      | 0.0   | 0      | 0.0   | (                 |
|       | Total   | 100.0 | 11,181  | 100.0 | 15,353  | 100.0 | 32,709  | 100.0 | 20,193  | 0.0   | 0      | 0.0   | 0      | 0.0   | 0      | 100.0 | 835    | 100.0 | 80,271            |
| 6/22  | Kvichak | 3.9   | 2,128   | 21.1  | 13,238  | 55.5  | 93,432  | 16.2  | 14,372  | 0.0   | 0      | 0.0   | 0      | 0.0   | 0      | 37.9  | 530    | 32.9  | 123,701           |
| thru  | Naknek  | 4.6   | 2,500   | 17.4  | 10,941  | 1.4   | 2,357   | 2.2   | 1,952   | 0.0   | 0      |       | 0      | 0.0   | 0      | 19.7  | 275    | 4.8   | 18,024            |
| 6/30  | Egegik  | 91.5  | 49,857  | 61.5  | 38,689  | 43.1  | 72,557  | 81.6  | 72,391  | 0.0   | 0      | 0.0   | 0      | 0.0   | 0      | 42.4  | 593    | 62.3  | 234,086           |
|       | Ugashik | 0.0   | 0       |       | 0       |       | 0       |       | 0       | 0.0   | 0      | 0.0   | 0      | 0.0   | 0      | 0.0   | 0      | 0.0   | Ċ                 |
|       | Total   | 100.0 | 54,485  | 100.0 | 62,868  | 100.0 | 168,346 | 100.0 | 88,714  | 0.0   | 0      | 0.0   | 0      | 0.0   | 0      | 100.0 | 1,398  | 100.0 | 375,811           |
| 7/01  | Kvichak | 2.1   | 3,929   | 14.6  | 25,771  | 42.7  | 182,467 | 10.4  | 41,543  | 0.0   | 0      | 16.8  | 1,172  | 0.0   | 0      | 32.9  | 3,054  | 21.3  | 257,936           |
| thru  | Naknek  | 0.0   | , 0     | 0.0   | , 0     | 0.0   | . 0     | 0.0   | 0       | 0.0   | 0      | 0.0   | 0      | 0.0   | 0      | 0.0   | 0      | 0.0   |                   |
| 7/02  | Egegik  | 97.9  | 184,185 | 85.4  | 150,731 |       | 244,856 | 89.6  | 357,909 | 100.0 | 2,322  | 83.2  | 5,795  | 0.0   | 0      | 67.1  | 6,235  | 78.7  | 952,033           |
|       | Ugashik | 0.0   | 0       | 0.0   | 0       |       |         | 0.0   | . 0     |       | . 0    | 0.0   | . 0    | 0.0   | 0      | 0.0   | 0      | 0.0   | . 0               |
|       | Total   | 100.0 | 188,114 | 100.0 | 176,502 | 100.0 | 427,323 | 100.0 | 399,452 | 100.0 | 2,322  | 100.0 | 6,967  | 0.0   | 0      | 100.0 | 9,289  | 100.0 | 1,209,969         |
| 7/03  | Kvichak | 1.4   | 2,029   | 9.3   | 16,291  | 33.8  | 108,886 | 11.6  | 62,187  | 0.0   | 0      | 12.1  | 1,189  | 0,0   | 0      | 0.0   | 0      | 15.9  | 190,583           |
| thru  | Naknek  | 1.8   | 2,581   | 8.3   | 14,576  | 0.8   | 2,577   | 0.9   | 4,825   | 0.0   | 0      | 0.0   | . 0    | 0.0   | 0      | 0.0   | 0      | 2.1   | 24,559            |
| 7/04  | Egegik  | 96.4  | 139,899 | 80.2  | 140,105 | 64.5  | 207,786 | 87.5  | 469,085 | 100.0 | 4,918  | 87.9  | 8,647  | 100.0 | 2,459  | 0.0   | 0      | 81.4  | 972,899           |
|       | Ugashik | 0.4   | 582     | 2.1   | 3,628   | 0.9   | 2,899   | 0.0   | 0       |       | 0      | 0.0   | 0      | 0.0   | 0      | 0.0   | 0      | 0.6   | 7,109             |
|       | Total   | 100.0 | 145,091 | 100.0 | 174,600 | 100.0 | 322,149 | 100.0 | 536,097 | 100.0 | 4,918  | 100.0 | 9,836  | 100.0 | 2,459  | 0.0   | 0      | 100.0 | 1,195,150         |
| 7/05  | Kvichak | 1.3   | 2,721   | 9.5   | 22,181  | 39.6  | 240,381 | 4.6   | 41,809  | 0.0   | 0      | 0.0   | 0      | 0.0   | 0      | 0.0   | 0      | 15.4  | 307,092           |
| thru  | Naknek  | 0.0   | 0       | 0.0   | 0       | 0.0   | 0       | 0.0   | 0       | 0.0   | 0      | 0.0   | 0      | 0.0   | Ō      | 0.0   | Ŏ      | 0.0   | 0                 |
| 7/06  | Egegik  | 98.7  | 207,276 | 90.5  | 210,784 | 60.4  | 366,641 | 95.4  | 867,083 | 100.0 | 39,374 | 0.0   | 0      | 0.0   | 0      | 0.0   | Ō      | 84.6  | 1,691,158         |
|       | Ugashik | 0.0   | 0       | 0.0   | . 0     | 0.0   | . 0     | 0.0   | . 0     |       | 0      | 0.0   | 0      | 0.0   | 0      | 0.0   | 0      | 0.0   |                   |
|       | Total   | 100.0 | 209,997 | 100.0 | 232,965 | 100.0 | 607,022 | 100.0 | 908,892 | 100.0 | 39,374 | 0.0   | 0      | 0.0   | 0      | 0.0   | 0      | 100.0 | <b>1,998,25</b> 0 |
| 7/07  | Kvichak | 1.6   | 2,174   | 8.7   | 18,206  | 46.0  | 184,516 | 8.1   | 51,161  | 0.0   | 0      | 0.0   | 0      | 0.0   | 0      | 0.0   | n      | 18.2  | 256,057           |
| thru  | Naknek  | 8.1   | 10,905  | 30.7  | 64,256  | 3.1   | 12,435  | 4.4   | 27,791  | 0.0   | Ō      | 0.0   | Ö      | 0.0   | Ö      | 0.0   | Õ      | 8.2   | 115,387           |
| 7/08  | Egegik  | 90.3  | 121,626 | 60.6  | 127,079 |       | 204,171 | 87.5  | 552,664 |       | 20,954 | 0.0   | 0      | 100.0 | 5,986  | 0.0   | Ö      | 73.6  | 1,032,480         |
|       | Ugashik | 0.0   | . 0     | 0.0   | 0       | 0.0   | . 0     | 0.0   | 0       | 0.0   | 0      | 0.0   | 0      | 0.0   | 0      | 0.0   | 0      | 0.0   | 0                 |
|       | Total   | 100.0 | 134,705 | 100.0 | 209,541 | 100.0 | 401,122 | 100.0 | 631,616 | 100.0 | 20.954 | 0.0   | 0      | 100.0 | 5,986  | 0.0   | 0      | 100.0 | 1,403,924         |

Table 20. (p 2 of 2).

|                       |                                                 |                                     | 1.2                                                  |                                     | 1.3                                                  |                     | 2.2                                                      |                                    | 2.3                                              |                     | 3.2                             | 2                  | -4               | 3                                   | .3                            | 0                        | ther                                      |                                     | Total                                                      |
|-----------------------|-------------------------------------------------|-------------------------------------|------------------------------------------------------|-------------------------------------|------------------------------------------------------|---------------------|----------------------------------------------------------|------------------------------------|--------------------------------------------------|---------------------|---------------------------------|--------------------|------------------|-------------------------------------|-------------------------------|--------------------------|-------------------------------------------|-------------------------------------|------------------------------------------------------------|
| Date                  | System                                          | %                                   | Number                                               | %                                   | Number                                               | %                   | Number                                                   | %                                  | Number                                           | %                   | Number                          | %                  | Number           | %                                   | Number                        | %                        | Number                                    | %                                   | Number                                                     |
| 7/10                  | Kvichak<br>Naknek<br>Egegik<br>Ugashik<br>Total | 1.4<br>0.0<br>97.7<br>0.9<br>100.0  | 2,000<br>0<br>142,645<br>1,327<br>145,972            | 0.0<br>85.4<br>4.9                  | 7,629<br>0<br>67,866<br>3,931<br>79,426              | 0.0<br>60.1<br>2.0  | 131,800<br>0<br>209,002<br>6,955<br>347,757              | 0.0<br>91.9<br>0.0                 |                                                  | 0.0<br>100.0<br>0.0 | 0<br>32,200<br>0                | 0.0<br>88.3<br>0.0 | . 0              | 0.0<br>0.0<br>0.0<br>0.0            | 0                             | 0.0<br>100.0             | 0<br>0<br>2,147<br>0<br>2,147             | 0.0<br>83.0<br>1.0                  | 187,489<br>0<br>974,513<br>12,213<br>1,174,215             |
| 7/12<br>thru<br>7/13  | Kvichak<br>Naknek<br>Egegik<br>Ugashik<br>Total | 1.1<br>0.0<br>93.7<br>5.2<br>100.0  | 1,033<br>0<br>86,232<br>4,750<br>92,015              | 0.0<br>69.5<br>23.8                 | 10,273<br>0<br>107,008<br>36,704<br>153,984          | 0.0<br>51.9<br>12.5 | 97,603<br>0<br>142,292<br>34,271<br>274,165              | 0.0<br>94.2<br>0.0                 | 28,427<br>0<br>461,687<br>0<br>490,114           | 0.0<br>100.0<br>0.0 | 0<br>0<br>9,389<br>0<br>9,389   | 0.0<br>0.0<br>0.0  | 0                | 0.0<br>0.0<br>100.0<br>0.0<br>100.0 | 0<br>0<br>5,634<br>0<br>5,634 | 0.0<br>30.2<br>64.1      | 424<br>0<br>2,271<br>4,817<br>7,512       | 0.0<br>78.9<br>7.8                  | 137,759<br>0<br>814,512<br>80,542<br>1,032,813             |
| 7/14<br>thru<br>7/15  | Kvichak<br>Naknek<br>Egegik<br>Ugashik<br>Total | 1.4<br>24.9<br>69.0<br>4.7<br>100.0 | 1,321<br>22,727<br>63,113<br>4,252<br>91,413         | 56.1<br>27.6<br>11.6                | 2,339<br>28,308<br>13,940<br>5,848<br>50,435         | 11.3<br>47.4<br>7.8 | 85,535<br>28,852<br>121,025<br>19,916<br>255,328         | 14.9<br>76.3<br>0.0                | 19,140<br>32,408<br>165,955<br>0<br>217,503      | 0.0<br>100.0<br>0.0 | 0<br>0<br>11,032<br>0<br>11,032 | 0.0<br>0.0<br>0.0  | 0 0 0            | 0.0<br>0.0<br>0.0<br>0.0            | 0<br>0<br>0<br>0              |                          | 153<br>129<br>81<br>1,214<br>1,576        | 17.9<br>59.8<br>5.0                 | 108,488<br>112,424<br>375,146<br>31,229<br>627,287         |
| 7/16°<br>thru<br>9/06 | Kvichak<br>Naknek<br>Egegik<br>Ugashik<br>Total | 0.7<br>1.9<br>87.1<br>10.3<br>100.0 | 855<br>2,514<br>113,774<br>13,458<br>130,601         | 52.0<br>38.3                        | 1,882<br>3,895<br>31,252<br>23,017<br>60,046         | 0.9<br>62.8<br>17.5 | 77,610<br>3,715<br>259,250<br>72,243<br>412,819          | 0.0                                | 0<br>4,053<br>333,707<br>0<br>337,760            | 100.0               | 0<br>0<br>46,536<br>0<br>46,536 | 0.0                | 0                | 0.0<br>0.0<br>100.0<br>0.0<br>100.0 | 0<br>0<br>1,501<br>0<br>1,501 | 0.0<br>0.0<br>0.0<br>0.0 | 0<br>0<br>0<br>0                          | 8.1<br>1.4<br>79.5<br>11.0<br>100.0 | 80,345<br>14,178<br>786,022<br>108,718<br>989,263          |
| Total                 | Kvichak<br>Naknek<br>Egegik<br>Ugashik<br>Total | 1.5<br>3.7<br>92.8<br>2.0<br>100.0  | 18,567<br>44,213<br>1,116,425<br>24,369<br>1,203,574 | 9.8<br>10.8<br>73.4<br>6.0<br>100.0 | 119,484<br>131,318<br>891,791<br>73,127<br>1,215,720 | 1.6<br>56.6<br>4.2  | 1,220,449<br>52,847<br>1,839,160<br>136,284<br>3,248,740 | 7.3<br>1.8<br>90.9<br>0.0<br>100.0 | 307,466<br>73,916<br>3,811,378<br>0<br>4,192,760 | 100.0               | 0                               | 0.0<br>86.4<br>0.0 | 0<br>18,232<br>0 | 0.0                                 | 0                             | 2.4<br>51.1<br>26.5      | 4,551<br>549<br>11,626<br>6,031<br>22,757 | 16.6<br>3.0<br>78.0<br>2.4<br>100.0 | 1,673,382<br>302,843<br>7,870,917<br>239,811<br>10,086,953 |

a Other includes ages 0.2, 0.3, 2.1, and 1.4.

b Scale samples were collected from 21 June. Stock composition estimates calculated for that date were applied to 7 June through 21 June catches.

<sup>&</sup>lt;sup>c</sup> Scale samples were collected on 16 and 18 July. Stock composition estimates calculated for those dates were applied to 16 July through 6 September catches.

Table 21. Run composition estimates of sockeye salmon setnet catch from selected beaches, Egegik District, 1990.

|                                         |                              | Percen                   | t Classifi                 | cation by                    | Stock                    |                                  |
|-----------------------------------------|------------------------------|--------------------------|----------------------------|------------------------------|--------------------------|----------------------------------|
| Beach                                   | Date                         | Kvichak                  | Naknek                     | Egegik                       | Ugashik                  | Total                            |
| Big Creek<br>to<br>Bishop Creek         | 7/02<br>7/03<br>7/06<br>7/07 | 2.6<br>2.4<br>7.0<br>0.8 | 0.0<br>15.4<br>0.0<br>20.5 | 97.4<br>82.2<br>88.5<br>78.7 | 0.0<br>0.0<br>4.5<br>0.0 | 100.0<br>100.0<br>100.0<br>100.0 |
| Bishop Creek<br>to<br>Coffee Point      | 7/02<br>7/03<br>7/06         | 2.7<br>0.9<br>10.4       | 0.0<br>0.0<br>6.7          | 97.3<br>99.1<br>82.9         | 0.0<br>0.0<br>0.0        | 100.0<br>100.0<br>100.0          |
| Coffee Point<br>to<br>King Salmon River | 7/06<br>7/07                 | 0.0<br>1.1               | 0.0<br>11.1                | 100.0<br>85.4                | 0.0<br>2.4               | 100.0<br>100.0                   |

Table 22. Run composition estimates of sockeye salmon catch by age group and date, Ugashik District, 1990.

|       |         | C     | .2     |       | 0.3    |       | 1.2     |       | 1.3     |       | 2.2     |       | 1.4    |       | 2.3     | 3     | .2     | 2     | .4     |       | Total   |
|-------|---------|-------|--------|-------|--------|-------|---------|-------|---------|-------|---------|-------|--------|-------|---------|-------|--------|-------|--------|-------|---------|
| Date  | System  | %     | Number | %     | Number | %     | Number  | %     | Number  | %     | Number  | %     | Number | %     | Number  | %     | Number | % N   | łumber | %     | Number  |
| 6/05° | Kvichak | 10.2  | 44     | 1.9   | 161    | 1.3   | 106     | 3.2   | 423     | 30.7  | 3,405   | 0.0   | 0      | 3.8   | 265     | 0.0   | 0      | 0.0   | 0      | 9.2   | 4,402   |
| thru  | Naknek  | 2.6   | 11     | 1.2   | 105    | 17.9  | 1,403   | 29.9  | 3,954   | 10.0  | 1,109   | 0.0   | 0      | 7.9   | 550     | 0.0   | 0      | 0.0   | 0      | 14.8  | 7,132   |
| 6/22  | Egegik  | 17.4  | 74     | 0.8   | 70     | 52.9  | 4,134   | 15.6  | 2,067   |       | 5,124   | 0.0   | 0      | 44.9  | 3,128   | 0.0   | 0      | 0.0   | 0      | 30.4  | 14,597  |
|       | Ugashik | 69.7  |        |       |        |       | 2,178   |       | 6,779   |       | 1,453   | 0.0   | 0      | 43.4  | 3,024   | 0.0   | 0      | 0.0   | 0      | 45.6  | 21,927  |
|       | Total   | 100.0 | 427    | 100.0 | 8,531  | 100.0 | 7,820   | 100.0 | 13,223  | 100.0 | 11,090  | 0.0   | 0      | 100.0 | 6,967   | 0.0   | 0      | 0.0   | 0      | 100.0 | 48,058  |
| 6/26  | Kvichak | 0.0   | 0      | 0.3   | 8      | 0.5   | 148     | 0.9   | 744     | 13.6  | 5,240   | 0.0   | 0      | 3.8   | 2,419   | 0.0   | 0      | 0.0   | 0      | 3.9   | 8,558   |
| thru  | Naknek  | 0.0   |        | 0.0   | 0      | 0.0   | 0       | 0.0   | 0       | 0.0   | 0       | 0.0   | 0      | 0.0   | 0       | 0.0   | 0      | 0.0   | 0      | 0.0   | 0       |
| 7/04  | Egegik  | 0.0   | 0      | 0.3   | 7      | 37.9  | 11,893  | 8.9   | 7,452   | 4.4   | 1,695   | 100.0 | 419    | 52.8  | 33,610  | 0.0   | 0      | 0.0   | 0      | 25.0  | 55,078  |
|       | Ugashik | 0.0   |        |       | •      |       | 19,368  | 90.2  | 75,563  |       | 31,594  | 0.0   | 0      | 43.4  | 27,627  | 0.0   | 0      | 0.0   | 0      | 71.1  | 156,649 |
|       | Total   | 0.0   | 0      | 100.0 | 2,512  | 100.0 | 31,410  | 100.0 | 83,759  | 100.0 | 38,529  | 100.0 | 419    | 100.0 | 63,656  | 0.0   | 0      | 0.0   | 0      | 100.0 | 220,285 |
| 7/06  | Kvichak | 1.8   | 46     | 0.3   | 26     | 0.4   | 503     | 0.8   | 1,583   | 6.6   | 12,848  | 0.0   | 0      | 7.6   | 16,236  | 0.0   | 0      | 0.0   | 0      | 4.2   | 31,243  |
| thru  | Naknek  | 0.0   |        | 0.0   |        | 0.0   | 0       | 0.0   | . 0     | 0.0   | , 0     | 0.0   | 0      | 0.0   | 0       | 0.0   | 0      | 0.0   | 0      | 0.0   | 0       |
| 7/09  | Egegik  | 5.4   | 136    | 0.2   | 20     | 30.6  | 34,370  | 6.6   | 13,490  |       | 24,918  | 100.0 | 3,792  | 41.7  | 89,083  | 0.0   | 0      | 0.0   | 0      | 22.3  | 165,809 |
|       | Ugashik |       |        |       | 10,066 |       | 77,629  | 92.6  | 189,710 |       | 156,902 |       |        | 50.7  |         | 0.0   | 0      | 0.0   |        | 73.5  | 544,963 |
|       | Total   | 100.0 | 2,528  | 100.0 | 10,112 | 100.0 | 112,503 | 100.0 | 204,783 | 100.0 | 194,668 | 100.0 | 3,792  | 100.0 | 213,629 | 0.0   | 0      | 0.0   | 0      | 100.0 | 742,015 |
| 7/10  | Kvichak | 0.0   | 0      | 0.4   | 10     | 0.7   | 253     | 1.1   | 791     | 6.1   | 7,338   | 0.0   | 0      | 15.4  | 18,525  | 0.0   | 0      | 24.8  | 179    | 7.6   | 27,096  |
| thru  | Naknek  | 0.0   |        | 0.0   | 0      | 0.0   | 0       | 0.0   | 0       | 0.0   | 0       | 0.0   | 0      | 0.0   | 0       | 0.0   | 0      | 0.0   | 0      | 0.0   | 0       |
| 7/12  | Egegik  | 0.0   |        | 0.1   | 3      | 20.2  | 7,262   | 3.9   | 2,829   | 6.6   | 7,939   |       | 2,161  | 28.8  | 34,644  |       | 1,440  | 75.2  |        | 15.9  | 56,820  |
|       | Ugashik | 0.0   |        |       |        | 79.1  | 28,501  | 95.0  | 69,132  |       | 105,014 | 0.0   | 0      |       | 67,123  | 0.0   | 0      | 0.0   | 0      | 76.5  | 272,637 |
|       | Total   | 0.0   | 0      | 100.0 | 2,881  | 100.0 | 36,016  | 100.0 | 72,752  | 100.0 | 120,291 | 100.0 | 2,161  | 100.0 | 120,292 | 100.0 | 1,440  | 100.0 | 720    | 100.0 | 356,553 |
| 7/13  | Kvichak | 0.0   | 0      | 0.3   | 4      | 0.5   | 164     | 0.8   | 332     | 8.3   | 8,441   | 0.0   | 0      | 6.3   | 5,298   | 0.0   | 0      | 0.0   | 0      | 5.4   | 14,239  |
| thru  | Naknek  | 0.0   |        | 0.0   | 0      | 0.0   | 0       | 0.0   | 0       | 0.0   | 0       | 0.0   | 0      | 0.0   | 0       | 0.0   | 0      | 0.0   | 0      | 0.0   | 0       |
| 7/15  | Egegik  | 0.0   |        | 0.2   | 3      | 33.0  | 11,613  | 7.3   | 2,932   | 12.3  | 12,509  | 0.0   | 0      | 51.6  | 43,396  |       | 1,467  | 0.0   |        | 27.2  | 71,921  |
|       | Ugashik | 0.0   |        |       | ,      | 66.5  | 23,427  | 91.9  | 36,829  | 79.4  | 80,752  | 0.0   | 0      | 42.1  | 35,406  | 0.0   | 0      | 0.0   |        | 67.4  | 177,873 |
|       | Total   | 0.0   | 0      | 100.0 | 1,467  | 100.0 | 35,204  | 100.0 | 40,093  | 100.0 | 101,702 | 0.0   | 0      | 100.0 | 84,100  | 100.0 | 1,467  | 0.0   | 0 ′    | 100.0 | 264,033 |

Table 22. (p 2 of 2).

|                                   |                                                 | 0                        | .2                 |                   | 0.3         |                     | 1.2                                            |                    | 1.3                                    |                    | 2.2                                             |                     | 1.4         |                     | 2.3                                       | 3                   | .2               | 2                 | -4            |                                     | Total                                                 |
|-----------------------------------|-------------------------------------------------|--------------------------|--------------------|-------------------|-------------|---------------------|------------------------------------------------|--------------------|----------------------------------------|--------------------|-------------------------------------------------|---------------------|-------------|---------------------|-------------------------------------------|---------------------|------------------|-------------------|---------------|-------------------------------------|-------------------------------------------------------|
| Date                              | System                                          | %                        | Number             | %                 | Number      | %                   | Number                                         | %                  | Number                                 | %                  | Number                                          | %                   | Number      | %                   | Number                                    | %                   | Number           | % N               | lumber        | . %                                 | Number                                                |
| 7/16 <sup>b</sup><br>thru<br>9/07 | Kvichak<br>Naknek<br>Egegik<br>Ugashik<br>Total | 0.0<br>0.0<br>0.0<br>0.0 | 0<br>0<br>0        | 0.0<br>0.0<br>0.0 | 0<br>0<br>0 |                     | 468<br>0<br>18,028<br>77,365<br>95,862         | 3.6<br>95.7        | 761<br>0<br>3,654<br>97,631<br>102,046 | 0.0<br>0.0<br>91.6 | 0<br>0<br>189,781                               | 0.0<br>100.0<br>0.0 | 6,185<br>0  | 0.0<br>51.6<br>42.1 | 6,429<br>0<br>52,656<br>42,961<br>102,046 | 0.0<br>0.0<br>0.0   | 0<br>0<br>0<br>0 | 0.0<br>0.0<br>0.0 | 0             |                                     | 25,062<br>0<br>80,523<br>407,739<br>513,324           |
| Total                             | Kvichak<br>Naknek<br>Egegik<br>Ugashik<br>Total |                          | 11<br>211<br>2,643 |                   | 105         | 0.4<br>27.4<br>71.7 | 1,642<br>1,403<br>87,302<br>228,468<br>318,815 | 0.8<br>6.3<br>92.0 |                                        | 0.2<br>7.7<br>84.0 | 54,675<br>1,109<br>52,185<br>565,496<br>673,465 | 0.0<br>100.0<br>0.0 | 12,557<br>0 | 0.1<br>43.4<br>48.2 | 284,451                                   | 0.0<br>100.0<br>0.0 | 0<br>2,907<br>0  | 75.2<br>0.0       | 0<br>541<br>0 | 5.2<br>0.3<br>20.7<br>73.8<br>100.0 | 110,600<br>7,132<br>444,748<br>1,581,788<br>2,144,268 |

<sup>&</sup>lt;sup>a</sup> Scale samples were collected from 22 June. Stock composition estimates calculated from that date were applied to 5 June through 22 June catches.

46

Scale samples were collected from 17 July. Stock composition estimates calculated from that date were applied to 16 July through 7 September catches.

Table 23. Catch of sockeye salmon by run and district for the East Side of Bristol Bay, 1990.

|                    |                    | Cato                                    | h by Distri       | ct                |                     |
|--------------------|--------------------|-----------------------------------------|-------------------|-------------------|---------------------|
| Run                |                    | Naknek/Kvichak                          | Egegik            | Ugashik           | Total               |
| Kvichak            | Numbers<br>Percent | 8,884,729<br>83.3                       | 1,673,382<br>15.7 | 110,600           | 10,668,711          |
| Naknek             | Numbers<br>Percent | 6,914,552<br>95.7                       | 302,843           | 7,132<br>0.1      | 7,224,527<br>100.0  |
| Egegik             | Numbers<br>Percent | · · · · · · · · · · · · · · · · · · ·   | 7,870,917<br>89.1 | 444,748<br>5.0    | 8,839,852<br>100.0  |
| Ugashik            | Numbers<br>Percent | , –                                     | 239,811           | 1,581,788<br>60.3 | 2,624,756<br>100.0  |
| Total<br>East Side | Numbers<br>Percent | , , , , , , , , , , , , , , , , , , , , | 10,086,953        | 2,144,268<br>7.3  | 29,357,846<br>100.0 |

Table 24. Percentages of sockeye salmon by run and age group for the East Side of Bristol Bay, 1990.

| Run     |                                                                   | 0.2                                       | 1.1  | 0.3                                              | 1.2                            | 2.1                                       | 0.4  | 1.3                            | 2.2                            | 1.4                           | 2.3                            | 3.2                          | 2.4                           | 3.3                       | Total                            |
|---------|-------------------------------------------------------------------|-------------------------------------------|------|--------------------------------------------------|--------------------------------|-------------------------------------------|------|--------------------------------|--------------------------------|-------------------------------|--------------------------------|------------------------------|-------------------------------|---------------------------|----------------------------------|
| Kvichak | Escapement<br>In District Catch<br>Other Dist. Catch              | 0.06<br>0.06<br>0.00°                     | 0.02 | 0.05<br>0.05<br>0.03                             | 1.20<br>0.99<br>0.11           |                                           |      | 1.33<br>3.13<br>0.70           | 34.59<br>35.97<br>7.23         |                               | 2.26<br>10.17<br>2.02          |                              | 0.01                          |                           | 39.52<br>50.37<br>10.11          |
|         | Total Run                                                         | 0.12                                      | 0.02 | 0.13                                             | 2.30                           |                                           |      | 5.16                           | 77.79                          |                               | 14.45                          |                              | 0.03                          |                           | 100.00                           |
| Naknek  | Escapement In District Catch Other Dist. Catch Total Run          | 0.01<br>0.02<br>0.00 <sup>a</sup><br>0.03 |      | 0.02<br>0.04<br><u>0.00</u> <sup>a</sup><br>0.06 | 6.30<br>16.53<br>0.49<br>23.32 | 0.02<br>0.03<br>0.00 <sup>a</sup><br>0.05 | 0.01 | 6.86<br>31.72<br>1.45<br>40.03 | 6.20<br>11.77<br>0.58<br>18.55 | 0.02<br>0.21<br>0.00°<br>0.23 | 3.02<br>13.90<br>0.80<br>17.72 |                              |                               |                           | 22.46<br>74.21<br>3.33<br>100.00 |
| Egegik  | Escapement<br>In District Catch<br>Other Dist. Catch<br>Total Run | 0.02<br>0.00°<br>0.01<br>                 |      | 0.00°<br>0.02<br>0.00°<br>0.03                   | 5.02<br>10.12<br>1.94<br>17.08 | 0.09<br>0.00°<br>0.01<br>0.10             |      | 1.04<br>8.08<br>0.89           | 8.33<br>16.67<br>1.57<br>26.57 | 0.00°<br>0.08<br>0.12<br>0.21 | 4.97<br>34.55<br>4.08<br>43.60 | 0.38<br>1.51<br>0.14<br>2.03 | 0.01<br>0.17<br>0.00°<br>0.18 | 0.00°<br>0.14<br>0.02<br> | 19.87<br>71.35<br>8.78<br>100.00 |
| Ugashik | Escapement<br>In District Catch<br>Other Dist. Catch              | 0.11<br>0.08<br>0.15                      | 0.01 | 0.57<br>0.75<br>0.46                             | 4.81<br>6.81<br>5.02           | 0.02                                      |      | 5.21<br>14.18<br>10.96         | 8.23<br>16.86<br>8.27          |                               | 2.79<br>8.48<br>6.23           |                              |                               |                           | 21.76<br>47.15<br>31.09          |
|         | Total Run                                                         | 0.33                                      | 0.01 | 1.77                                             | 16.65                          | 0.03                                      |      | 30.35                          | 33.36                          |                               | 17.50                          |                              |                               |                           | 100.00                           |

Represented < 0.01%

Table 25. Numbers of sockeye salmon by run and age group for the East Side of Bristol Bay, 1990.

| Run     |                                                      | 0.2                     | 1.1   | 0.3                        | 1.2                             | 2.1                  | 0.4 | 1.3                             | 2.2                                 | 1.4                    | 2.3                             | 3.2                         | 2.4                  | 3.3                    | Total                               |
|---------|------------------------------------------------------|-------------------------|-------|----------------------------|---------------------------------|----------------------|-----|---------------------------------|-------------------------------------|------------------------|---------------------------------|-----------------------------|----------------------|------------------------|-------------------------------------|
| Kvichak | Escapement<br>In District Catch<br>Other Dist. Catch | 11,107<br>11,422<br>171 | 3,530 | 8,060<br>9,179<br>4,679    | 211,062<br>174,799<br>20,209    |                      |     | 234,020<br>551,801<br>124,117   | 6,101,908<br>6,344,297<br>1,275,124 |                        | 397,935<br>1,793,231<br>356,638 |                             | 2,398<br>3,044       |                        | 6,970,020<br>8,884,729<br>1,783,982 |
|         | Total Run                                            | 22,700                  | 3,530 | 21,918                     | 406,070                         |                      |     | 909,938                         | 13,721,330                          |                        | 2,547,804                       |                             | 5,442                |                        | 17,638,731                          |
| Naknek  | Escapement<br>In District Catch<br>Other Dist. Catch | 836<br>1,817<br>24      |       | 1,540<br>3,532<br>385      | 587,225<br>1,539,728<br>45,616  | 2,065<br>2,706<br>12 | 587 | 639,524<br>2,955,432<br>135,272 | 577,631<br>1,096,598<br>53,956      | 1,706<br>19,630<br>244 | 281,464<br>1,295,109<br>74,466  |                             |                      |                        | 2,092,578<br>6,914,552<br>309,975   |
|         | Total Run                                            | 2,677                   |       | 5,457                      | 2,172,569                       | 4,783                | 587 | 3,730,228                       | 1,728,185                           | 21,580                 | 1,651,039                       |                             |                      |                        | 9,317,105                           |
| Egegik  | Escapement In District Catch Other Dist. Catch       | 1,890<br>73<br>671      |       | 349<br>2,273<br>187        | 553,754<br>1,116,425<br>213,992 | 155<br>1,178         |     | 114,787<br>891,791<br>98,664    | 918,871<br>1,839,160<br>172,911     | 164<br>9,125<br>12,754 | 548,009<br>3,811,378<br>450,483 | 42,159<br>166,725<br>15,534 | 991<br>18,232<br>541 | 349<br>15,580<br>2,020 | 2,191,362<br>7,870,917<br>968,935   |
|         | Total Run                                            | 2,634                   |       | 2,809                      | 1,884,171                       | 11,372               |     | 1,105,242                       | 2,930,942                           | 22,043                 | 4,809,870                       | 224,418                     | 19,764               | 17,949                 | 11,031,214                          |
| Ugashik | Escapement<br>In District Catch<br>Other Dist. Catch | 3,527<br>2,643<br>4,952 | 492   | 19,161<br>25,086<br>15,265 | 161,531<br>228,468<br>168,424   | 743<br>219           |     | 174,878<br>475,644<br>367,573   | 276,080<br>565,496<br>277,483       |                        | 93,626<br>284,451<br>209,052    |                             |                      |                        | 730,038<br>1,581,788<br>1,042,968   |
|         | Total Run                                            | 11,122                  | 492   | 59,512                     | 558,423                         | 962                  |     | 1,018,095                       | 1,119,059                           |                        | 587,129                         |                             |                      |                        | 3,354,794                           |

Table 26. Comparison of sockeye salmon run estimates for the East Side of Bristol Bay, 1990.

|                    | Est                          |                        |            |  |  |
|--------------------|------------------------------|------------------------|------------|--|--|
| Stock              | Standard Method <sup>a</sup> | Scale Pattern Analysis | Difference |  |  |
| Kvichak            | 17,575,819                   | 17,638,731             | - 62,912   |  |  |
| Naknek             | 8,613,404                    | 9,317,105              | - 703,701  |  |  |
| Egegik             | 12,278,315                   | 11,031,214             | 1,247,101  |  |  |
| Ugashik            | 2,874,306                    | 3,354,794              | - 480,488  |  |  |
| Total<br>East Side | 41,341,844                   | 41,341,844             |            |  |  |

Standard method assumes fish harvested in a district originated within that district and divides Naknek-Kvichak District catch to Naknek and Kvichak Rivers based on escapement age composition (Stratton 1991). These numbers have been adjusted to include Branch River run.

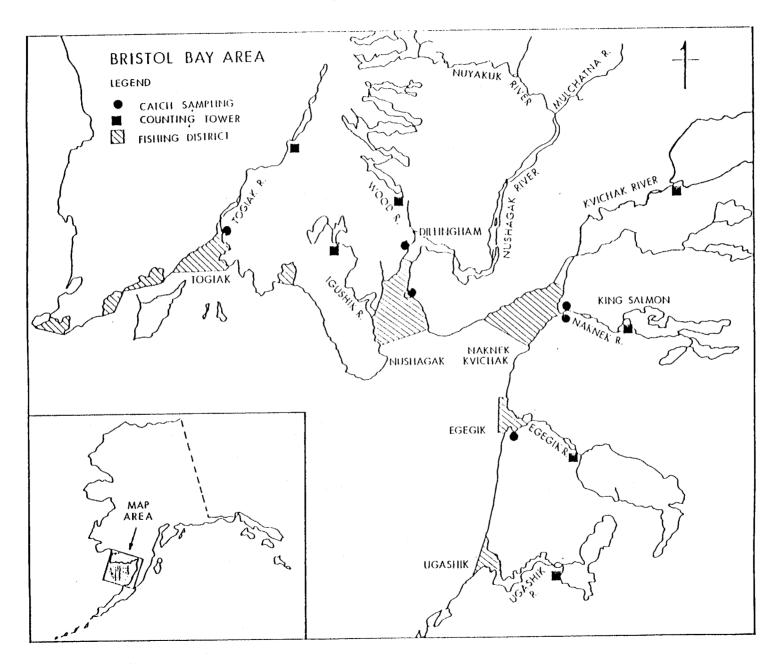



Figure 1. Bristol Bay major river systems and commercial fishing districts.

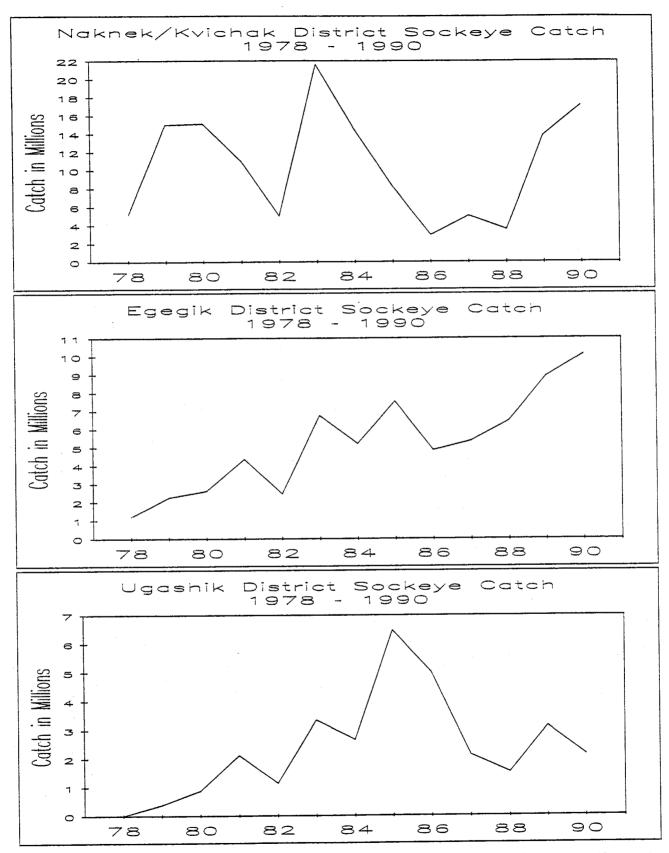



Figure 2. Commercial catch of sockeye salmon in Naknek-Kvichak, Egegik, and Ugashik Districts from 1978 through 1990.

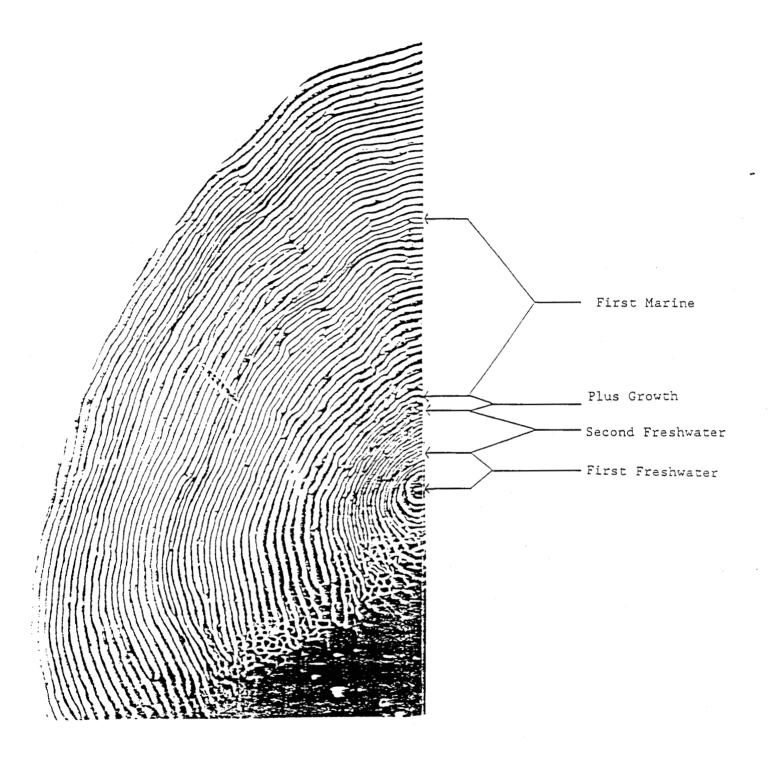



Figure 3. Age-2.2 sockeye salmon scale showing the growth zones measured to generate variables to build linear discriminant functions.

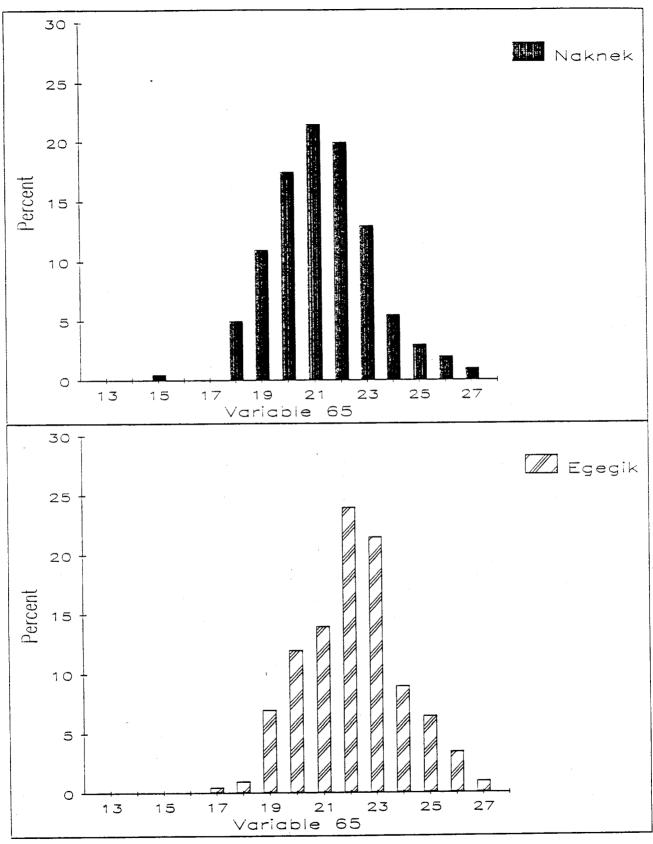



Figure 4. Total number of circuli counted in all freshwater growth zones (NC1FW+NC2FW+NCPG) on age-2.3 sockeye salmon escapement scales, Naknek and Egegik Rivers, 1990.

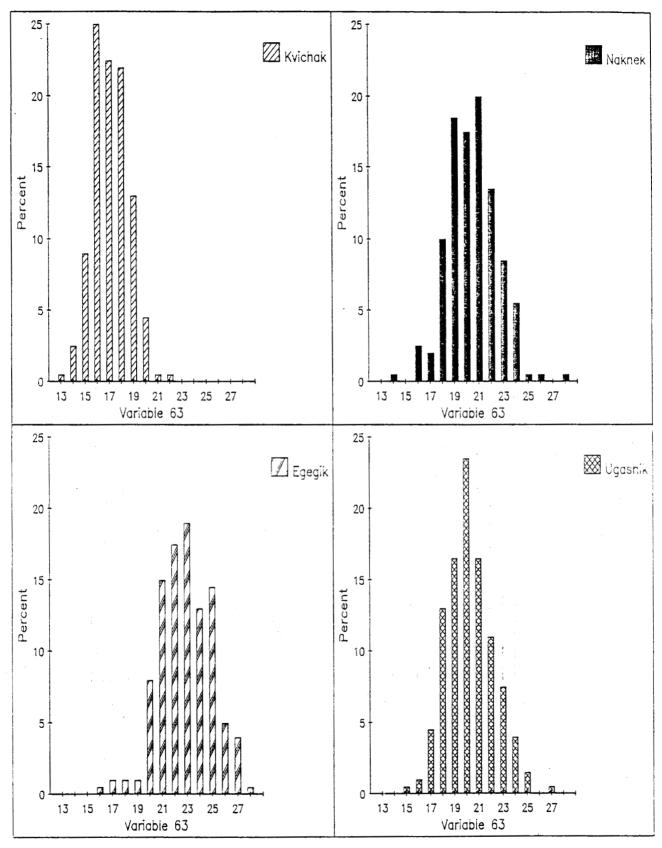



Figure 5. Total number of circuli counted in first and second freshwater growth zones (NC1FW+NC2FW) on age-2.2 sockeye salmon escapement scales, Kvichak, Naknek, Egegik, and Ugashik Rivers, 1990.

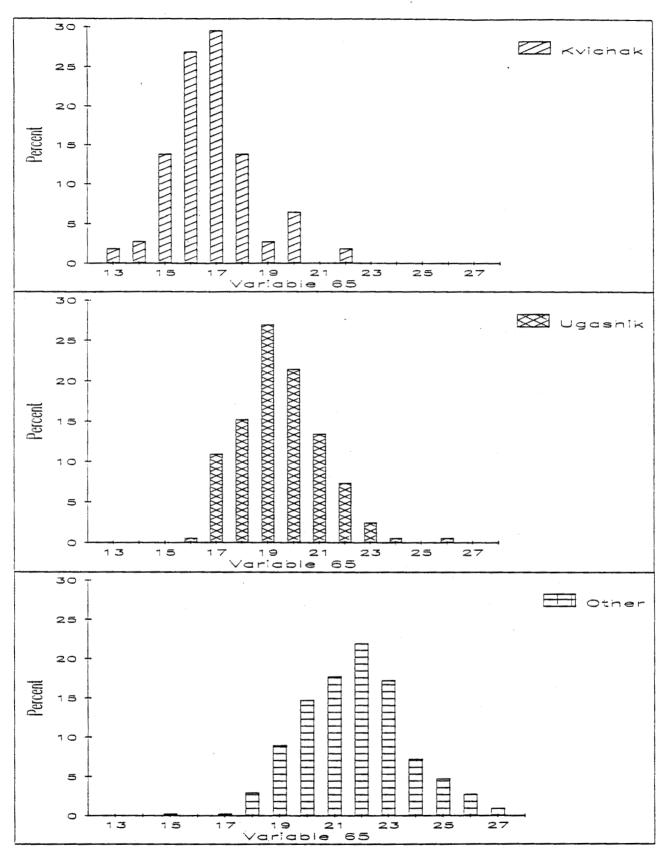



Figure 6. Total number of circuli counted in all freshwater growth zones (NC1FW+NC2FW+NCPG) on age-2.3 sockeye salmon escapement scales, Kvichak, Ugashik, and Naknek/Egegik (Other) Rivers combined, 1990.

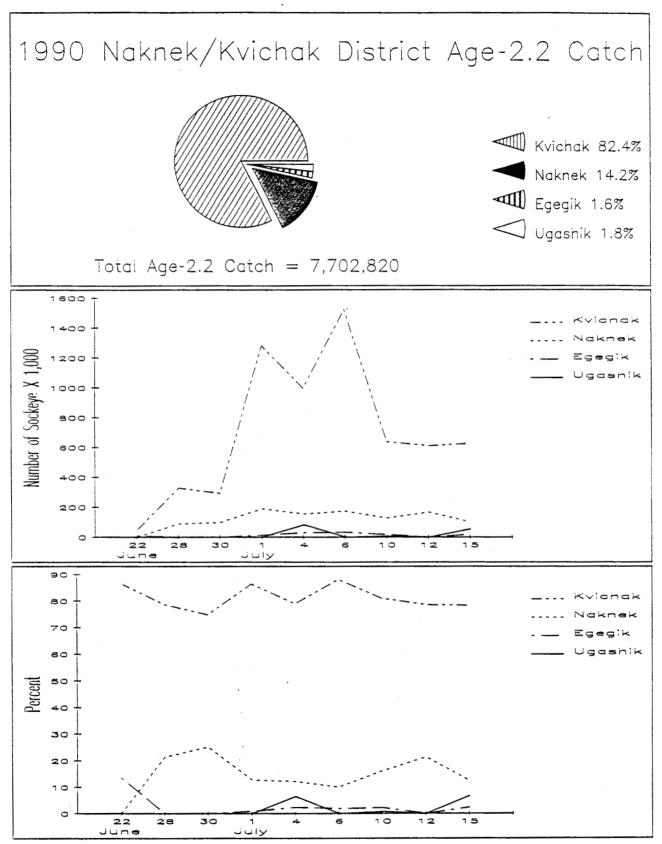



Figure 7. Stock composition estimates for 1990 Naknek-Kvichak District age-2.2 sockeye salmon catch in percent and numbers through time.

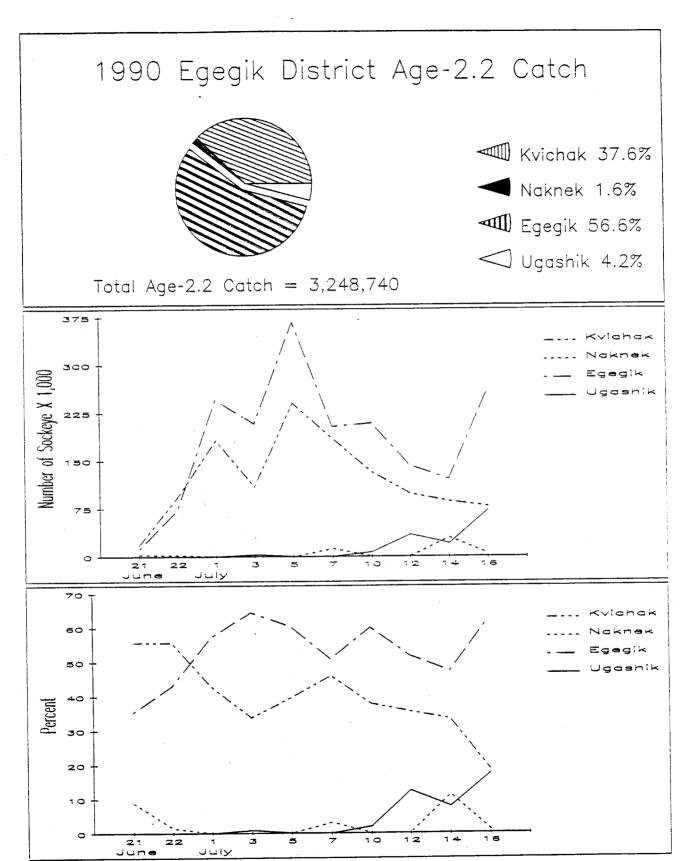



Figure 8. Stock composition estimates for 1990 Egegik District age-2.2 sockeye salmon catch in percent and numbers through time.

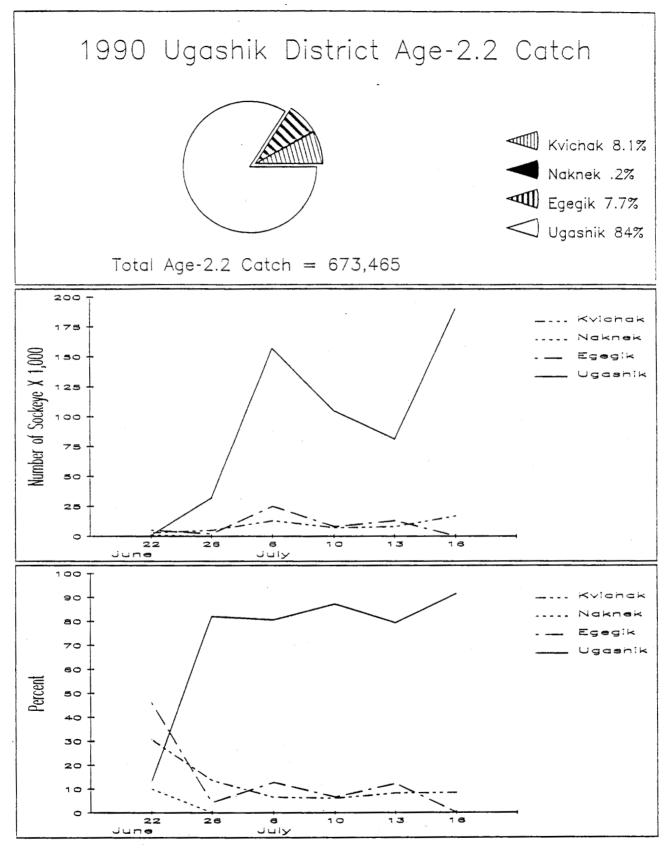



Figure 9. Stock composition estimates for 1990 Ugashik District age-2.2 sockeye salmon catch in percent and numbers through time.

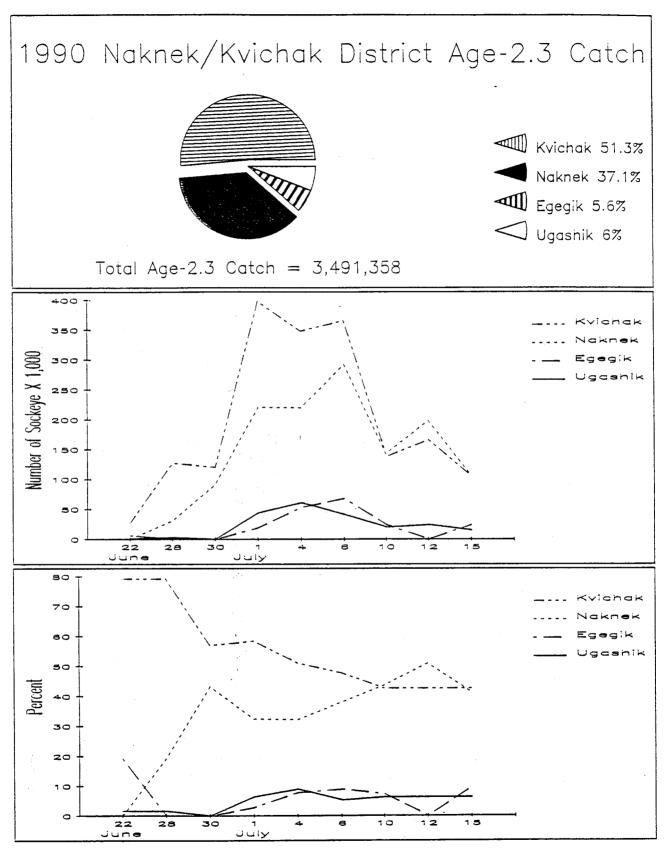



Figure 10. Stock composition estimates for 1990 Naknek-Kvichak District age-2.3 sockeye salmon catch in percent and numbers through time.

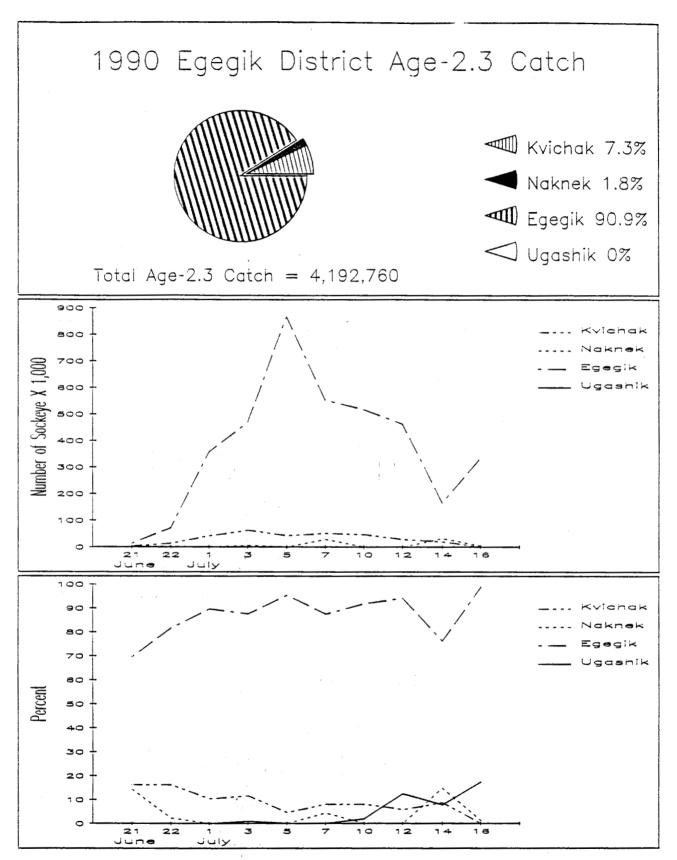



Figure 11. Stock composition estimates for 1990 Egegik District age-2.3 sockeye salmon catch in percent and numbers through time.

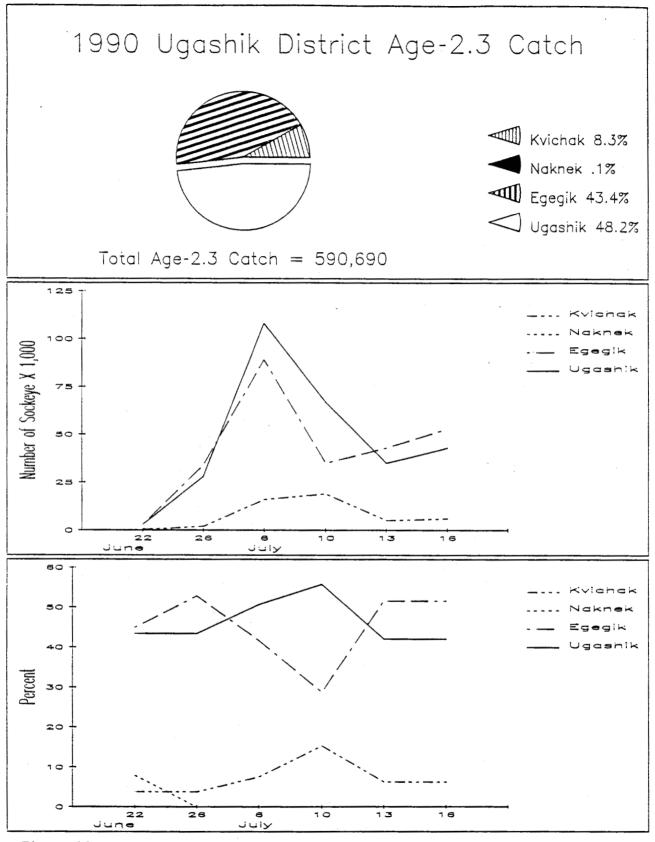



Figure 12. Stock composition estimates for 1990 Ugashik District age-2.3 sockeye salmon catch in percent and numbers through time.

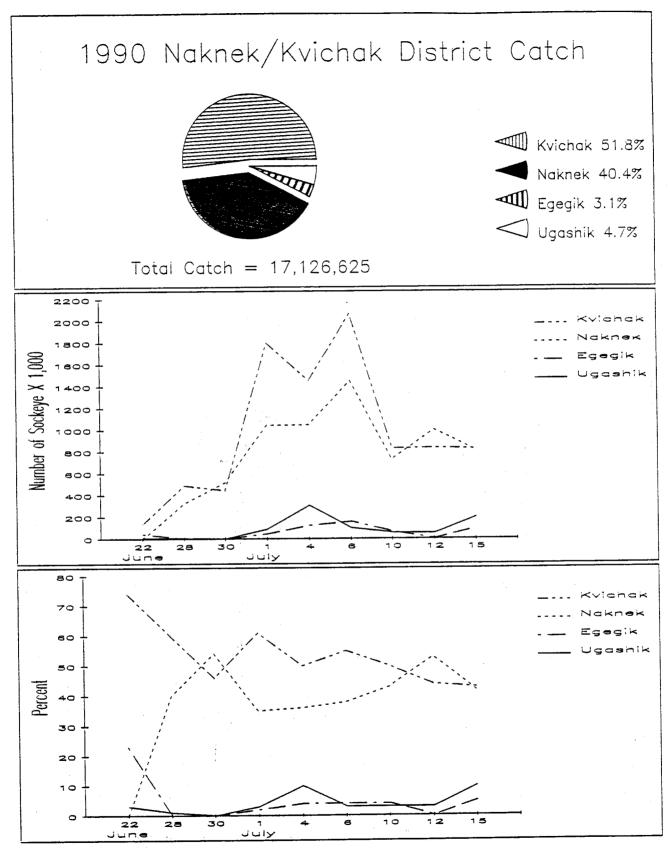



Figure 13. Stock composition estimates for 1990 Naknek-Kvichak District total sockeye salmon catch in percent and numbers through time.

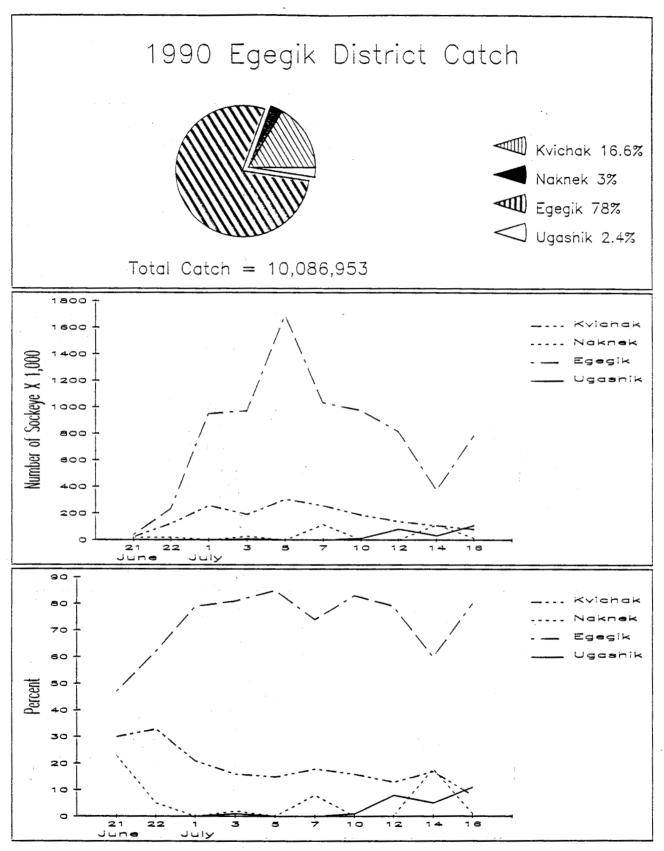
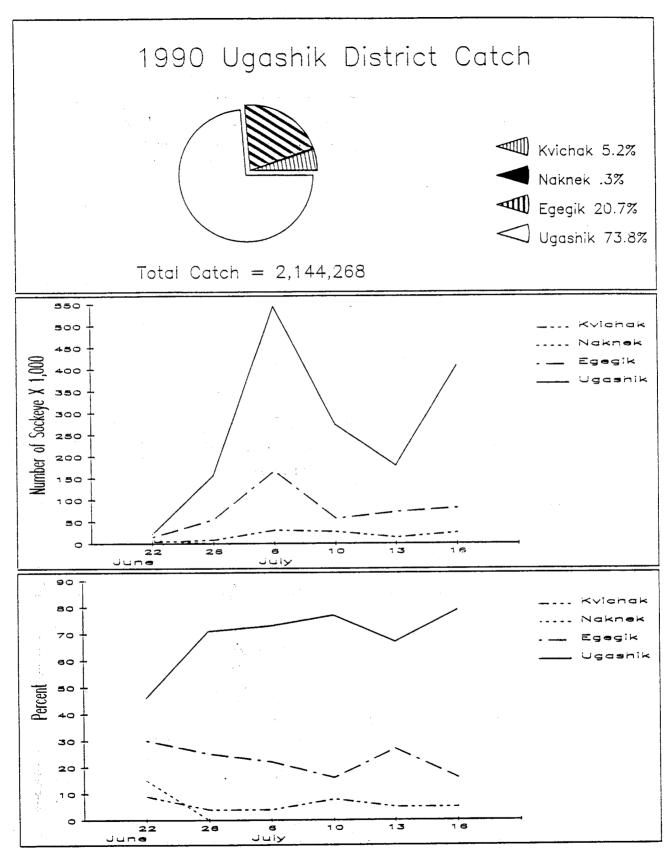
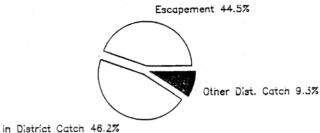
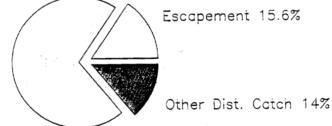



Figure 14. Stock composition estimates for 1990 Egegik District total sockeye salmon catch in percent and numbers through time.



Figure 15. Stock composition estimates for 1990 Ugashik District total sockeye salmon catch in percent and numbers through time.

# 1990 Kvichak River Age-2.2 Run



Total Age-2.2 Run = 13,721,330

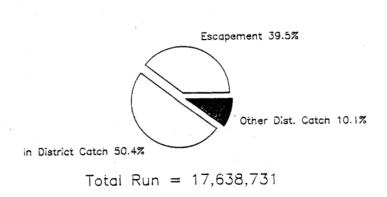
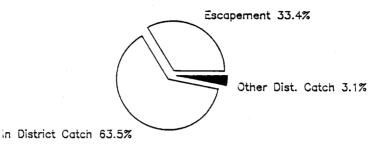
## 1990 Kvichak River Age-2.3 Run

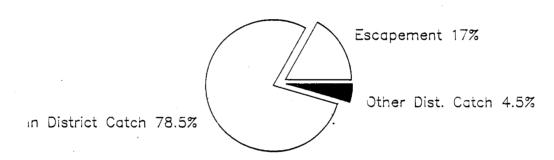


In District Catch 70.4%

Total Age-2.3 Run = 2,547,804

#### 1990 Kvichak River Total Run



Figure 16. Estimated 1990 Kvichak River sockeye salmon run (by age and total) by escapement, in district catch, and other district catch.

#### 1990 Naknek River Age-2.2 Run



Total Age-2.2 Run = 1,728,185

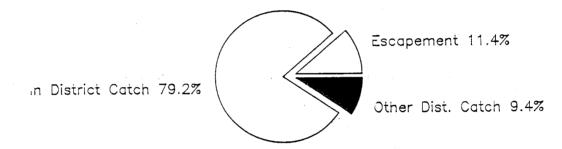
#### 1990 Naknek River Age-2.3 Run



Total Age-2.3 Run = 1,651,039

#### 1990 Naknek River Total Run




Figure 17. Estimated 1990 Naknek River sockeye salmon run (by age and total) by escapement, in district catch, and other district catch.

# 1990 Egegik River Age-2.2 Run



Total Age-2.2 Run = 2,930,942

# 1990 Egegik River Age-2.3 Run



Total Age-2.3 Run = 4,809,870

## 1990 Egegik River Total Run

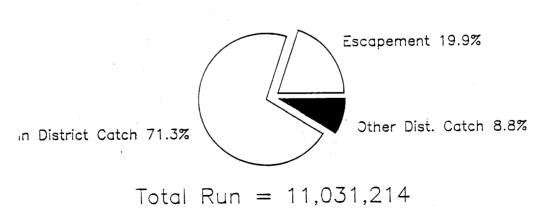
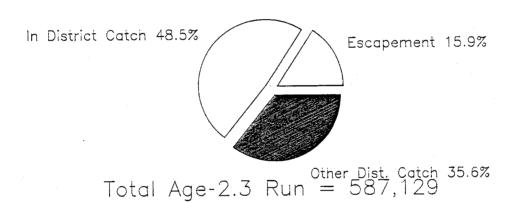




Figure 18. Estimated 1990 Egegik River sockeye salmon run (by age and total) by escapement, in district catch, and other district catch.

## 1990 Ugashik River Age-2.2 Run



# 1990 Ugashik River Age-2.3 Run



## 1990 Ugashik River Total Run

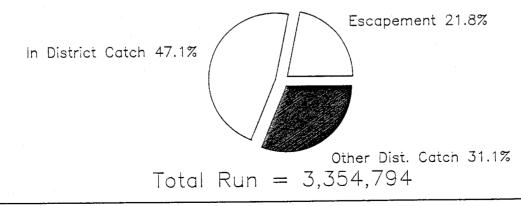



Figure 19. Estimated 1990 Ugashik River sockeye salmon run (by age and total) by escapement, in district catch, and other district catch.

Appendix A.1. Comparison of stock composition estimates of sockeye salmon caught in Naknek-Kvichak District and Naknek Section only openings, 1990.

| Kvichak |                                                                              |                                                                                          | Percent Classification by Stock                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|---------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|         | Naknek                                                                       | Egegik                                                                                   | Ugashik                                                                                                                                                                                                                                                                                                                                                                          | Tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| 74.2    | 0.0                                                                          | 22.4                                                                                     | 3.4                                                                                                                                                                                                                                                                                                                                                                              | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 60.2    | 39.2                                                                         | 0.0                                                                                      | 0.6                                                                                                                                                                                                                                                                                                                                                                              | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 46.5    | 53.5                                                                         | 0.0                                                                                      | 0.0                                                                                                                                                                                                                                                                                                                                                                              | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 68.0    | 29.9                                                                         | 0.0                                                                                      | 2.1                                                                                                                                                                                                                                                                                                                                                                              | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 61.2    | 19.9                                                                         | 12.8                                                                                     | 6.1                                                                                                                                                                                                                                                                                                                                                                              | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 56.9    | 35.3                                                                         | 4.9                                                                                      | 2.9                                                                                                                                                                                                                                                                                                                                                                              | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 43.7    | 37.9                                                                         | 14.1                                                                                     | 4.3                                                                                                                                                                                                                                                                                                                                                                              | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 59.1    | 28.7                                                                         | 1.4                                                                                      | 10.8                                                                                                                                                                                                                                                                                                                                                                             | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 48.2    | 35.2                                                                         | 13.2                                                                                     | 3.4                                                                                                                                                                                                                                                                                                                                                                              | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 61.4    | 36.3                                                                         | 0.0                                                                                      | 2.3                                                                                                                                                                                                                                                                                                                                                                              | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 50.1    | 43.0                                                                         | 3.7                                                                                      | 3.2                                                                                                                                                                                                                                                                                                                                                                              | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 44.7    | 52.5                                                                         | 0.0                                                                                      | 2.8                                                                                                                                                                                                                                                                                                                                                                              | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 43.6    | 41.3                                                                         | 4.6                                                                                      | 10.5                                                                                                                                                                                                                                                                                                                                                                             | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|         | 60.2<br>46.5<br>68.0<br>61.2<br>56.9<br>43.7<br>59.1<br>48.2<br>61.4<br>50.1 | 60.239.246.553.568.029.961.219.956.935.343.737.959.128.748.235.261.436.350.143.044.752.5 | 60.2       39.2       0.0         46.5       53.5       0.0         68.0       29.9       0.0         61.2       19.9       12.8         56.9       35.3       4.9         43.7       37.9       14.1         59.1       28.7       1.4         48.2       35.2       13.2         61.4       36.3       0.0         50.1       43.0       3.7         44.7       52.5       0.0 | 60.2       39.2       0.0       0.6         46.5       53.5       0.0       0.0         68.0       29.9       0.0       2.1         61.2       19.9       12.8       6.1         56.9       35.3       4.9       2.9         43.7       37.9       14.1       4.3         59.1       28.7       1.4       10.8         48.2       35.2       13.2       3.4         61.4       36.3       0.0       2.3         50.1       43.0       3.7       3.2         44.7       52.5       0.0       2.8 |  |  |  |  |  |  |

Scale samples were collected 20 and 21 June. Stock composition estimates calculated from those dates were applied to 11 through 22 June catches.

b Naknek Section only opening

Scale samples were collected 15 July. Stock composition estimates calculated from those dates were applied to 15 July through 17 August catches.

The Alaska Department of Fish and Game conducts all programs and activities free from discrimination on the basis of sex, color, race, religion, national origin, age, martial status, pregnancy, parenthood, or disability. For information on alternative formats available for this and other department publications, please contact the department ADA Coordinator at (voice) 907-465-4120, (TDD) 1-800-478-3648, or (fax) 907-586-6595. Any person who believes he or she has been discriminated against by this agency should write to: ADF&G, P.O. Box 25526, Juneau, AK 99802-5526; or O.E.O., U.S. Department of the Interior, Washington, DC 20240.